
A Semantic Framework for Declassification and
Endorsement

Aslan Askarov Andrew Myers

Department of Computer Science, Cornell University

Abstract. Language-based information flow methods offer a principled way to
enforce strong security properties, but enforcing noninterference is too inflexi-
ble for realistic applications. Security-typed languages have therefore introduced
declassification mechanisms for relaxing confidentiality policies, and endorse-
ment mechanisms for relaxing integrity policies. However, a continuing challenge
has been to define what security is guaranteed when such mechanisms are used.
This paper presents a new semantic framework for expressing security policies
for declassification and endorsement in a language-based setting. The key in-
sight is that security can be described in terms of the power that declassification
and endorsement give the attacker. The new framework specifies how attacker-
controlled code affects program execution and what the attacker is able to learn
from observable effects of this code. This approach yields novel security condi-
tions for checked endorsements and robust integrity. The framework is flexible
enough to recover and to improve on the previously introduced notions of robust-
ness and qualified robustness. Further, the new security conditions can be soundly
enforced by a security type system. The applicability and enforcement of the new
policies is illustrated through various examples, including data sanitization and
authentication.

1 Introduction
Many common security vulnerabilities can be seen as violations of either confidential-
ity or integrity. As a general way to prevent these information security vulnerabilities,
information flow control has become a popular subject of study, both at the language
level [17] and at the operating-system level. The language-based approach holds the ap-
peal that the security property of noninterference [11], can be provably enforced using
a type system [19]. In practice, however, noninterference is too rigid: many programs
considered secure need to violate noninterference in limited ways.

Using language-based downgrading mechanisms such as declassification [14] and
endorsement [16, 21], programs can be written in which information is intentionally re-
leased, and in which untrusted information is intentionally used to affect trusted infor-
mation or decisions. Declassification relaxes confidentiality policies, and endorsement
relaxes integrity policies. Both endorsement and declassification have been essential for
building realistic applications: for example, the various applications built with Jif [12,
15], including games [4], a voting system [10], and web applications [8].

A continuing challenge is to understand what security is obtained when code uses
downgrading. The contribution of this paper is providing a more precise and satisfactory
answer to this question. Much prior work on declassification is usefully summarized by

Sands and Sabelfeld [18]. However, there is comparatively little work on characterizing
the security of declassification in the presence of endorsement. Because confidential-
ity and integrity are not independent, it is important to understand how endorsement
weakens confidentiality.

To see an interaction between endorsement and confidentiality, consider the follow-
ing notional code example, in which a service holds both old data (old_data) and new
data (new_data), but the new data is not to be released until time embargo_time. The
variable new_data is considered confidential, and must be declassified to be released:

if request_time >= embargo_time

then return declassify(new_data)

else return old_data

Because the requester is not trusted, the requester must be treated as a possible at-
tacker. Suppose the requester has control over the variable request_time, which we
can model by considering that variable to be low-integrity. Because the intended se-
curity policy depends on request_time, that means the attacker controls the policy
that is being enforced, and can obtain the confidential new data earlier than intended.
This example shows that the integrity of request_time affects the confidentiality of
new_data. Therefore, the program should be considered secure only when the guard
expression, request_time >= embargo_time, is high-integrity.

A different but reasonable security policy is that the requester may specify the re-
quest time as long as the request time is in the past. This policy could be enforced in
a language with endorsement by first checking the low-integrity request time to ensure
it is in the past; then, if the check succeeds, endorsing it to be high-integrity and pro-
ceeding with the information release. The explicit endorsement is justifiable because
the attacker’s actions are permitted to affect the release of confidential information as
long as adversarial inputs have been properly sanitized. This is a common pattern in
servers that process possibly adversarial inputs.

Robust declassification has been introduced in prior work [20, 13, 9] as a semantic
condition for secure interactions between integrity and confidentiality. The prior work
also develops type systems for enforcing robust declassification, which are implemented
as part of Jif [15]. However, the security conditions for robustness are not satisfactory.
First, they largely ignore the possibility of endorsement, with the exception of qualified
robustness [13], which works by giving the endorse operation a somewhat ad-hoc,
nondeterministic semantics. Second, prior conditions only characterize information se-
curity for programs that terminate. A program that does not terminate is automatically
considered to satisfy robust declassification, even if it releases information improperly
during execution. Therefore the security of programs that do not terminate (such as
servers) cannot be described.

The main contribution of this paper is a general, language-based semantic frame-
work for expressing information flow security. This semantically captures the ability of
the attacker to influence knowledge. The robust interaction of integrity and confiden-
tiality can then be captured cleanly as a constraint on attacker control. Endorsement is
naturally represented in this framework as a form of attacker control, and a more satis-
factory version of qualified robustness can be defined. All these security conditions can
be formalized in both progress-sensitive and progress-insensitive variants.

2

P, T

P, U

S, U

S, T

Fig. 1: Information flow lattice

e ::= n | x | e op e

c ::= skip | x := e | c; c
| if e then c1 else c2 | while e do c

Fig. 2: Syntax of the language

We show that the progress-insensitive variants of these improved security conditions
can be enforced soundly by a simple security type system. Recent versions of Jif have
added a checked endorsement construct that is useful for expressing complex security
policies [8], but whose semantics were not precisely defined; this paper gives semantics,
typing rules and a semantic security condition for checked endorsement, and shows that
checked endorsement can be translated faithfully into simple endorsement at both the
language and the semantic level.

The rest of this paper is structured as follows. Section 2 shows how to define infor-
mation security in terms of attacker knowledge. Section 3 introduces attacker control.
Section 4 defines progress-sensitive and progress-insensitive robustness using the new
framework. Section 5 extends this to improved definitions of robustness that allow en-
dorsements, generalizing qualified robustness. A type system for enforcing these robust-
ness conditions is presented in Section 6. The checked endorsement construct appears
in Section 7, which introduces a new notion of robustness that allows checked endorse-
ments, and shows that it can be understood in terms of robustness extended with simple
endorsements. Section 8 introduces attacker power. Additional examples are presented
in Section 9, related work is discussed in Section 10, and Section 11 concludes.

2 Semantics
Information flow levels We assume two security levels for confidentiality—public

and secret—and two security levels for integrity—trusted and untrusted. These levels
are denoted respectively P,S and T,U. We define information flow orderingv between
these two levels: P v S, and T v U. The four levels define a security lattice, as shown
on Figure 1. Every point on this lattice has two security components: one for confiden-
tiality, and one for integrity. We extend information flow ordering to elements on this
lattice: `1 v `2 if the ordering holds between the corresponding components. As stan-
dard, we define join `1 t `2 as the least upper bound of `1 and `2, and meet `1 u `2 as
the greatest upper bound of `1 and `2.

Language and semantics We consider a simple imperative language with syntax pre-
sented on Figure 2. The semantics of the language is fairly standard. For expressions
we define big-step evaluation of the form 〈e,m〉 ↓ v, where v is the result of evaluating
expression e in memory m.

3

For commands we define a small-step operational semantics. For a single transi-
tion, we write 〈c,m〉−→t〈c′,m′〉, where c and m are the initial command and mem-
ory, c′ and m′ are the resulting command and memory. The transitions defined by the
semantics are fully standard, and are described in detail in the associated technical re-
port. The only unusual feature is the annotation t on each transition, which we call an
event. Events record assignments: an assignment to variable x of value v is recorded
by an event (x, v). We write 〈c,m〉−→∗~t to mean that trace ~t is produced starting from
〈c,m〉 using zero or more transitions. Each trace ~t is composed of individual events
t1 . . . tk . . . , and a prefix of ~t up to the i-th event is denoted as ~ti. If a transition does
not affect memory, its event is empty, which is either written as ε or is omitted, e.g.:
〈c,m〉−→〈c′,m′〉.

Finally, we assume that the security environment Γ maps program variables to their
security levels. Given a memory m we write mP for the public part of the memory.

2.1 Attacker knowledge
This section provides background on the attacker-centric model for information flow
security [2]. We recall definitions of attacker knowledge, progress knowledge, and di-
vergence knowledge, and introduce progress-(in)sensitive release events.

Low events Among the events that are generated during a trace, we distinguish a set
of low (or public) events. Low events correspond to observations that an attacker can
make during a run of the program. We assume that attacker may observe individual
assignments to public variables. Furthermore, if the program terminates, we assume
that a termination event ⇓ may also be observed by the attacker.

Given a trace ~t, low events in that trace are denoted as ~tP. A single low event is
often denoted as `, and a sequence of low events is denoted as ~̀. We overload the
notation for semantic transitions, writing 〈c,m〉−→∗~̀ if only low events produced from
configuration 〈c,m〉 are relevant, that is there is a trace ~t such that 〈c,m〉−→∗~t∧~tP = ~̀.
Low events are the key element in the definition of attacker knowledge [2].

The knowledge of the attacker is described by the set of initial memories compat-
ible with low observations. Any reduction in this set means the attacker has learned
something about secret parts of the initial memory.

Definition 1 (Attacker knowledge) Given a sequence of low events ~̀, initial low mem-
ory mP, and program c, attacker knowledge is

k(c,mP, ~̀) , {m′ |mP = m′P ∧ 〈c,m′〉−→∗~̀}

Attacker knowledge gives a handle on what information attacker learns with every low
event. The smaller the knowledge set, the more precise is the attacker’s information
about secrets. Knowledge is monotonic in the number of low events: as the program
produces low events, the attacker may learn more about secrets.

Two extensions of attacker knowledge are useful: progress knowledge [1, 3] and
divergence knowledge [1].

Definition 2 (Progress knowledge) Given a sequence of low events ~̀, initial low mem-
ory mP, and a program c, define progress knowledge k→(c,mP, ~̀) as

k→(c,mP, ~̀) , {m′ |m′P = mP ∧ 〈c,m′〉−→∗~̀〈c′′,m′′〉−→∗`′}

4

Progress knowledge represents the information the attacker obtains by seeing public
events ~̀ followed by one more public event. Progress knowledge and attacker knowl-
edge are related as follows: given a program c, memorym and a sequence of low events
`1 . . . `n obtained from 〈c,m〉 we have that for all i < n,

k(c,mP, ~̀i) ⊇ k→(c,mP, ~̀i) ⊇ k(c,mP, ~̀i+1)

To illustrate this, consider program l := 0; while h = 0 do skip; l := h with initial
memory m(h) = 7. This program produces a sequence of two low events (l, 0)(l, 7).
The knowledge after the first event k(c,mP, (l , 0)) is a set of all possible memories.
Note that no low events are possible after the first assignment unless h is non-zero.
Progress knowledge reflects this: k→(c,mP, (l , 0)) is a set of memories such that h 6= 0.
Finally, the knowledge after two events k(c,mP, (l , 0)(l , 7)) is a set of memories where
h = 7.

Using attacker knowledge, one can express many confidentiality policies [6, 3, 7].
For example, a strong notion of progress-sensitive noninterference [11] can be ex-
pressed by demanding that knowledge between low events does not change:

k(c,mP, ~̀i) = k(c,mP, ~̀i+1)

Progress knowledge enables expressing more permissive policies, such as progress-
insensitive noninterference (in [1] it is called termination-insensitive), which allows
leakage of information, but only via termination channels. This is expressed by re-
quiring equivalence of progress knowledge after seeing i events with the knowledge
obtained after i+ 1-th event:

k→(c,mP, ~̀i) = k(c,mP, ~̀i+1)

In the example l := 0; while h = 0 do skip; l := 1, the knowledge inclusion between
the two events is strict: k(c,mP, (l, 0)) ⊃ k(c,mP, (l, 0)(l, 1)). Therefore, the example
does not satisfy progress-sensitive noninterference. On the other hand, the low event
that follows the while loop does not reveal more information than the knowledge about
the existence of that event. Formally, k→(c,mP, (l, 0)) = k(c,mP, (l, 0)(l, 1)), hence
the program satisfies progress-insensitive noninterference.

These definitions also allow us to reason about knowledge changes along parts of
the traces. We say that knowledge is preserved in a progress-(in)sensitive way along a
part of a trace, assuming that the respective knowledge equality holds for the low events
that correspond to that part.

Next, we extend possible observations to a divergence event ⇑. For attackers that
may observe program divergence ⇑, we define knowledge on the sequence of low events
that includes divergence (we write 〈c,m〉 ⇑ to mean configuration 〈c,m〉 diverges):

Definition 3 (Divergence knowledge)

k(c,mP, ~̀ ⇑) , {m′ |m′P = mP ∧ 〈c,m′〉−→∗~̀〈c′′,m′′〉 ∧ 〈c′′,m′′〉 ⇑}

Note that the above definition does not require divergence immediately after ~̀ — it
allows for more low events to be produced after ~̀. Divergence knowledge is used in
Section 4.

Let us consider events at which knowledge preservation is broken. We call these
events release events.

5

Definition 4 (Release events) Given a program c and a memory m, such that

〈c,m〉−→∗~̀〈c′,m′〉−→∗r

– r is a progress-sensitive release event, if k(c,mP, ~̀) ⊃ k(c,mP, ~̀r)
– r is a progress-insensitive release event, if k→(c,mP, ~̀) ⊃ k(c,mP, ~̀r)

For example, in the program low := 1; low ′ := h, the second assignment is both a
progress-sensitive and a progress-insensitive release event. In the program while h =
0 do skip; low := 1 the assignment to low is a progress-sensitive release event, but is
not a progress-insensitive release event.

3 Attacks
To reason about security of program in the presence of active attacks, we introduce a
formal model of the attacker. Our formalization follows the one in [13], where attacker-
provided code can be injected into the program. This section provides examples of how
attacker-injected code may affect attacker knowledge, followed by a semantic charac-
terization of the attacker’s influence on knowledge.

We extend the syntax to allow execution of attacker-controlled code:

c[~•] ::= . . . | [•]

We limit attacks that can be substituted into the holes to so-called fair attacks — attacks
that do not read confidential information and do not modify trusted variables.

Definition 5 (Fair attacks) An attack is a vector of commands ~a that are substituted
in place of holes in c[~•]. Fair attacks are defined by the following grammar where for
all variables y in e we have Γ (y) v (P,U) and for variable x in assignments we have
(P,U) v Γ (x).

a ::= skip | x := e | a; a | if e then a else a | while e do a

3.1 Examples of attacker influence
In the examples below, we use notation [(u, v)] when a low event (u, v) is generated by
attacker-injected code.

Consider program [•]; low := u > h; where h is a secret variable, and u is an
untrusted public variable. The attacker’s code is executed before the low assignment
and may change the value of u. Consider memory m, where m(h) = 7 and the two
attacks a1 = u := 0 and a2 = u := 10. These attacks result in different values being
assigned to variable low . The first trace results in low events [(u, 0)](low , 0), while the
second trace results in low events [(u, 10)](low , 1). This also means that the knowledge
about the secret is different in each trace. We have

k(c[a1],mP, [(u, 0)](low , 0)) = {m′ |m′(h) ≥ 0}
k(c[a2],mP, [(u, 10)](low , 1)) = {m′ |m′(h) < 10}

Clearly, in this program the attacker has some control over what information about
secrets he learns. Observe that it is not necessary for the last assignment to differ in
order for the knowledge to be different. For this, consider attack a3 = u := 5. This

6

attack results in low events [(u, 5)](low , 0), that do the same assignment to low as a1

does. Attacker knowledge, however, is different from that obtained by a1:

k(c[a3],mP, [(u, 5)](low , 0)) = {m′ |m′(h) ≥ 5}

Next, consider program [•]; low := h. This program gives away knowledge about
the value of h independently of untrusted variables. The only way for the attacker to in-
fluence what information he learns is to prevent that assignment from happening at all,
which, as a result, will prevent him from learning that information. This can be done by
an attack such as a = while true do skip, which makes the program diverge before
the assignment is reached. We call attacks like this pure availability attacks. Another ex-
ample of a pure availability attack is in the program [•]; while u = 0 do skip; low :=
h. In this program, any attack that sets u to 0 prevents the assignment from happening.

Consider another example [•]; while u < h′ do skip; low := 1. As in the previous
example, the value of u may change the reachability of low := 1. However, this is
not a pure availability attack, because (assuming the attacker can observe divergence)
diverging before the last assignment gives the attacker additional information about
secrets, namely that u < h′. New information is also obtained if the attacker sees the
low assignment. We name attacks like this progress attacks. In general, a progress attack
is an attack that leads to program divergence in a way that observing that divergence
(i.e., detecting there is no progress) gives new knowledge to the attacker.

3.2 Attacker control
We represent attacker control as a set of attacks that are similar in their influence on
knowledge. Intuitively, if a program leaks no information to the attacker, the control
corresponds to all possible attacks. In general, the more attacks are similar, the less
influence the attacker has. Moreover, the control is a temporal property and depends on
the trace that has been currently produced. Here, the longer a trace is, the more influence
an attack may have, and the smaller the control set is.

Similar attacks The key element in the definition of control is specifying when two
attacks are similar. Given a program c[~•], memory m, consider two attacks ~a, and~b that
produce traces ~t and ~q respectively:

〈c[~a],m〉−→∗~t and 〈c[~b],m〉−→∗~q

We compare ~a and~b based on how they change attacker knowledge along their respec-
tive traces. First, if knowledge is preserved along one of the traces, say ~t, it must be
preserved along ~q as well. Second, if at some point in ~t there is a release event (x, v),
there must be a matching low event (x, v) in ~q, and the attacks are similar along the rest
of the traces.

Visually, this requirement is described by the two diagrams in Figure 3. Each dia-
gram shows the change of knowledge as more low events are produced. Here the x-axis
corresponds to low events, and the y-axis reflects the attacker’s uncertainty about initial
secrets. Whenever one of traces reaches a release event, depicted by vertical drops, there
must be a corresponding low event in the other trace, such that the two events agree.
This is depicted by the dashed lines between the two diagrams.

Formally, these requirements are stated using the following definitions.

7

Definition 6 (Knowledge segmentation) Given a program c, memory m, and a trace
~t, a sequence of indexes p1, . . . pN such that p1 < p2 · · · < pN and
~tP = `1...p1`p1+1...p2 . . . `pN−1+1...pN

is called

– progress-sensitive knowledge segmentation of size N , if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k(c,mP, ~̀i) = k(c,mP, ~̀i+1), denoted by
Seg(c,m,~t, p1 . . . pN).

– progress-insensitive knowledge segmentation of size N if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k→(c,mP, ~̀i) = k(c,mP, ~̀i+1), denoted by
Seg→(c,m,~t, p1 . . . pN).

Low events pi + 1 for 1 ≤ i < N are called segmentation events.

Note that given a trace there can be more than one way to segment it, and for every trace
consisting of n low events this can be trivially achieved by a segmentation of size n.

Definition 7 (Similar attacks and traces ∼c[~•],m) Given a program c[~•], memory m,
and two attacks ~a and ~b that produce traces ~t and ~q, define ~a and ~b as similar along ~t
and ~q for the progress-sensitive attacker, if there are two segmentations p1 . . . pN and
p′1 . . . p

′
N (for some N) such that Seg(c[~a],m,~t, p1 . . . pN), Seg(c[~b],m, ~q, p′1 . . . p

′
N),

and ∀i . 1 ≤ i < N . tPpi+1 = qPp′i+1.
For the progress-insensitive attacker, the definition is similar except that it uses

progress-insensitive segmentation Seg→. If two attack–trace pairs are similar, we write
(~a,~t) ∼c[~•],m (~b, ~q) (for progress-insensitive similarity, (~a,~t) ∼c[~•],m→ (~b, ~q)).

x, v

y, u

z, w

uncertainty uncertainty

low events low events

Fig. 3: Similar attacks and traces

The construction of Definitions 6 and 7 can be exemplified by program [•]; if u then (
while h ≤ 100 do skip) else skip; low1 := 0; low2 := h > 100. Consider memory
with m(h) = 555, and two attacks a1 = [u = 1], and a2 = [u = 0]. Both attacks reach
the assignments to low variables. However, for a2 the assignment to low2 is a progress-
insensitive release event, while for a1 the knowledge changes at an earlier assignment.

Attacker control We define attacker control with respect to an attack ~a and a trace ~t
as the set of attacks that are similar to the given attack in its influence on knowledge.

Definition 8 (Attacker control (progress-sensitive))
R(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m (~b, ~q))}

8

To illustrate how attacker control changes, consider example program [•]; low := u <
h; low ′ := h where u is an untrusted variable and h is a secret variable. To understand
attacker control of this program, we consider an initial memory m(h) = 7 and attack
a = u := 5. The low event (low , 1) in this trace is a release event. The attacker control
is a set of all attacks that are similar to a and trace [(u := 5)], (low , 1) in its influence
on knowledge. This corresponds to attacks that set u to values such that u < 7. The
assignment to low ′ changes attacker knowledge as well, but the information that the
attacker gets does not depend on the attack: any trace starting in m and reaching the
second assignment produces the low event (low ′, 7); hence the attacker control does
not change at that event.

Consider the same example but with the two assignments swapped: [•]; low ′ :=
h; low := u < h. The assignment to low ′ is a release event that the attacker cannot
affect. Hence the control includes all attacks that reach this assignment. The result of
the assignment to low depends on u. However, this result does not change attacker
knowledge. Indeed, in this program, the second assignment is not a release event at all.
Therefore, the attacker control is simply all attacks that reach the first assignment.

Progress-insensitive control For progress-insensitive security, attacker control is de-
fined similarly using the progress-insensitive comparison of attacks.

Definition 9 (Attacker control (progress-insensitive))

R→(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q))}

Consider program [•]; while u < h do skip; low := 1. Here, any attack produces a
trace that preserves progress-insensitive noninterference. If the loop is taken, the pro-
gram produces no low events, hence, it gives no new knowledge to the attacker. If the
loop is not taken, and the low assignment is reached, this assignment preserves attacker
knowledge in a progress-insensitive way. Therefore, the attacker control is all attacks.

4 Robustness
Release control Next, we define release control R., which captures the attacker’s

influence on release events. Intuitively, release control expresses the extent to which an
attacker can affect the decision to produce some release event.

Definition 10 (Release control (progress-sensitive))

R.(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m (~b, ~q) ∧

(∃~r′ . k(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP~r′P)

∨ k(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ⇑)

∨ 〈c[~b],m〉 ⇓)}

The definition for release control is based on the one for attacker control with the three
additional clauses, explained below. These clauses restrict the set of attacks to those that
either terminate or produce a release event. Because the progress-sensitive attacker can
also learn new information by observing divergence, the definition contains additional
clause (on the third line) that uses divergence knowledge to reflect that.

9

Figure 4a depicts the relationship between release control and attacker control,
where the x-axis corresponds to low events, and the y-axis corresponds to attacks. The
top line depicts attacker control R, where vertical lines correspond to release events.
The gray area denotes release control R.. In general, for a given attack ~a and a cor-
responding trace ~t~r, where ~r contains a release event, we have the following relation
between release control and attacker control:

R(c[~•],m,~a,~t) ⊇ R.(c[~•],m,~a,~t) ⊇ R(c[~•],m,~a,~t~r)
Note the white gaps and the gray release control above the dotted lines on Figure 4a.
The white gaps correspond to difference R(c[~•],m,~a,~t) \ R.(c[~•],m,~a,~t). This is a
set of attacks that do not produce further release events and diverge without giving
any new information to the attacker—pure availability attacks. The gray zones above
the dotted lines are more interesting. Every such zone corresponds to the difference
R.(c[~•],m,~a,~t) \ R(c[~•],m,~a,~t~r). In particular, when this set is non-empty, the at-
tacker can launch attacks corresponding to each of the last three lines of Definition 10:

1. either trigger a different release event ~r′, or
2. cause program to diverge in a way that also releases information, or
3. prevent a release event from happening in a way that leads to program termination

Absence of such attacks constitutes the basis for our security conditions in Defini-
tions 12 and 13. Before moving on to these definitions, we introduce the progress-
insensitive variant of release control.

Definition 11 (Release control (progress-insensitive))

R.→(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q) ∧

(∃~r′ . k→(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP~r′P) ∨ 〈c[~b],m〉 ⇓)}

This definition uses the progress-insensitive variants of similar attacks and release events.
It also does not account for knowledge obtained from divergence.

release events

attacks

R⊲

R

(a) Release control
release events

attacks

R⊲

R

(b) Robustness

Fig. 4: Release control and robustness

With the definition of release control at hand we can now define semantic conditions
for robustness. The intuition is that all attacks leading to release events should lead to
the same release event. Formally, this is defined as inclusion of release control into
attacker control, where release control is computed on the prefix of the trace without a
release event.

10

Definition 12 (Progress-sensitive robustness) Program c[~•] satisfies progress-sensitive
robustness if for all memories m and attacks ~a, s.t. 〈c[~a],m〉−→∗~a〈c′,m′〉−→∗~r, and ~r
contains a release event, i.e., k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have

R.(c[~•],m,~a,~t) ⊆ R(c[~•],m,~a,~t~r)

Note that set inclusion in the above definition could be replaced with strict equality,
but we use ⊆ for compatibility with future definitions. Figure 4b illustrates the relation
between release control and attacker control for robust programs. Note how release
control is bounded by the attacker control at the next release event.

Examples We illustrate the definition of robustness with a few examples.
Consider program [•]; low := u < h, and memory such that m(h) = 7. This

program is rejected by Definition 12. To see this, pick an a = u := 5, and consider the
part of the trace preceding the low assignment. Release control R.(c[~•],m, a, [(u, 5)])
is all attacks that reach the assignment to low . On the other hand, the attacker control
R(c[~•],m, a, [(u, 5)](low , 1)) is a set of all attacks where u < 7, which is smaller than
R.. Therefore this program does not satisfy the condition.

Program [•]; low := h; low ′ := u < h satisfies robustness. The only release event
here corresponds to the first assignment. However, because the knowledge given by
that assignment does not depend on untrusted variables, the release control includes all
attacks that reach the assignment.

Program [•]; if u > 0 then low := h else skip is rejected. Consider memory
m(h) = 7, and attack a = u := 1 that leads to low trace [(u, 1)], (low , 7). The attacker
control for this attack and trace is a set of all attacks such that u > 0. On the other hand,
release control R.(c[~•],m,~a, [(u, 1)]) is the set of all attacks that lead to termination,
which includes attacks such that u ≤ 0. Therefore, the release control corresponds to a
bigger set than the attacker control.

Program [•]; while u > 0 do skip; low := h is accepted. Depending on the at-
tacker controlled variable the release event is reached. However, this is an example of
availability attack, which is ignored by Definition 12.

Program [•]; while u > h do skip; low := 1 is rejected. Any attack leading to the
low assignment restricts the control to attacks such that u ≤ h. However, release control
includes attacks u > h, because the attacker learns information from divergence.

The definition of progress-insensitive robustness is similar to Definition 12, but uses
progress-insensitive variants of release events, control, and release control. As a result,
program [•]; while u > h do skip; low := 1 is accepted: attacker control is all attacks.

Definition 13 (Progress-insensitive robustness) Program c[~•] satisfies progress-insen-
sitive robustness if for all memories m and attacks ~a, s.t. 〈c[~a],m〉−→∗~a〈c′,m′〉−→∗~r,
and ~r contains a release event, i.e., k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have

R.→(c[~•],m,~a,~t) ⊆ R→(c[~•],m,~a,~t~r)

5 Endorsement
This section extends the semantic policies for robustness in a way that allows endorsing
attacker-provided values.

11

Syntax and semantics We extend the language syntax with endorsement:

c[~•] ::= . . . | x := endorseη(e)

We assume that every endorsement in the program source has a unique endorsement
label η. Semantically, endorsements produce endorsement events which record the label
of the endorsement statement together with the value that is endorsed. Whenever the
endorsement label is unimportant we omit it from the examples.

〈e,m〉 ↓ v
〈x := endorseηi

(e),m〉−→endorse(ηi,v)〈stop,m[x 7→ v]〉

Note that endorse(ηi, v) events need not mention variable name x since that informa-
tion is implied by the unique label ηi.

Irrelevant attacks Given a trace ~t, we introduce irrelevant attacks Φ(~t) as the attacks
that lead to the same sequence of endorsement events as in ~t, until they necessarily dis-
agree on one of the endorsements. Because the influence of these attacks is reflected
at endorsement events, we exclude them from consideration when comparing with at-
tacker control. We start by defining irrelevant traces. Given a trace ~t, irrelevant traces
for ~t are all traces ~t′ that agree with ~t on all endorsements but the last one. We define
this set as follows.

Definition 14 (Irrelevant traces) Given a trace ~t, where endorsements are marked as
endorse(ηj , vj), define a set of irrelevant traces based on the number of endorsements
in ~t as φi(~t): φ0(~t) = ∅, and

φi(~t) = {~t′ | ~t′ = . . . endorse(ηi−1, vi−1) . . . endorse(ηi, v′i) . . . } s.t. vi 6= v′i

Define φ(~t) ,
⋃
i φi(~t) as a set of irrelevant traces w.r.t. ~t.

Definition 15 (Irrelevant attacks) Φ(c[~•],m,~t) , {~a| 〈c[~a],m〉−→∗~t′ ∧ ~t′ ∈ φ(~t)}

Security The security conditions for robustness can be adjusted now to accommodate
endorsements that happen along the trace. The idea is to exclude irrelevant attacks from
the left-hand side of Definitions 12 and 13. This security condition, which has both
progress-sensitive and progress-insensitive versions, expresses roughly the same idea
as qualified robustness [13], but in a more natural and direct way.

Definition 16 (Progress-sensitive robustness with endorsements) Program c[~•] sat-
isfies progress-sensitive robustness with endorsement if for all memories m and attacks
~a, such that 〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r, and ~r contains a release event, i.e.,

k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have

R.(c[~•],m,~a,~t) \ Φ(c[~•],m,~t~r) ⊆ R(c[~•],m,~a,~t~r)

We refer to the set R.(c[~•],m,~a,~t) \ Φ(c[~•],m,~t~r) as a set of relevant attacks.

12

Examples Program [•]; low := endorseη1(u < h) is accepted. Consider initial
memory m(h) = 7, and an attack u := 1; this produces a trace [(u, 1)]endorse(η1, 1).
The endorsed assignment also produces a release event. We have that

– Release control R. is a set of all attacks that reach the low assignment.
– Irrelevant traces φ([•]; low := endorseη1(u < h),m, [(u, 1)]endorse(η1, 0)) is a

set of traces that end in endorsement event endorse(η1, v) such that v 6= 0. Thus,
irrelevant attacks Φ([•]; low := endorseη1(u < h),m, [(u, 1)]endorse(η1, 0))
must consist of attacks that reach the low assignment and set u to values u ≥ 7.

– The left-hand side of Definition 16 is therefore the set of attacks that reach the
endorsement and set u to u < 7.

– As for the attacker control on the right-hand side, it consists of attacks that set
u < 7. Hence, the set inclusion of Definition 16 holds and the program is accepted.

Program [•]; low := endorseη1(u); low
′ := u < h′′ is accepted. The endorsement in

the first assignment implies that all relevant attacks must agree on the value of u, and,
consequently, they agree on the value of u < h′′, which gets assigned to low ′. This also
means that relevant attacks belong to the attacker control (which contains all attacks
that agree on u < h′′).

Program [•]; low := endorseη1(u < h); low ′ := u < h′′ is rejected. Take initial
memory such that m(h) 6= m(h′). The set of relevant attacks after the second assign-
ment contains attacks that agree on u < h (due to the endorsement), but not necessarily
on u < h′′. The latter, however, is the requirement for the attacks that belong to the
attacker control.

Program [•]; if u > 0 then h ′ := endorse(u) else skip; low := h′ < h is
rejected. Assume initial memory where m(h) = m(h′) = 7. Consider attack a1 that
sets u := 1 and consider trace ~t1 which it gives. This trace endorses u in the then
branch, overwrites the value of h′ with 1, and produces a release event (low , 1). Con-
sider another attack a2 which sets u := 0, and consider the corresponding trace ~t2. This
trace contains release event (low , 0) without any endorsements. Now, attacker control
R(c[~•],m, a2,~t2) excludes a1, because of the disagreement at the release event. At the
same time, a1 is a relevant attack for a2, because no endorsements happen along ~t2.

We can also define robustness with endorsement in a progress-insensitive way:

Definition 17 (Progress-insensitive robustness with endorsement) Program c[~•] sat-
isfies progress-insensitive robustness with endorsement if for all memories m and at-
tacks ~a, such that 〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r, and ~r contains a release event, i.e.,

k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have

R.→(c[~•],m,~a,~t) \ Φ(c[~•],m,~t~r) ⊆ R→(c[~•],m,~a,~t~r)

6 Enforcement
This section shows the enforcement of robustness using a security type system. While
this section focuses on progress-insensitive enforcement, it is possible to refine the type
system to deal with progress-sensitivity (modulo availability attacks). Figure 5 displays
type rules for expressions and commands. This type system is based on the one of [13]
and is similar to many standard security type systems.

13

Declassification We extend the language with a language construct for declassifica-
tion of expressions declassify(e). Whereas in earlier examples, we considered an
assignment l := h to be secure if it did not violate robustness, we now require infor-
mation flows from public to secret to be mediated by declassification. While declassi-
fication has no additional semantics and can be inferred automatically, its use has the
following motivations:

1. On the enforcement level, the type system conveniently ensures that a non-progress
release event may happen only at declassification. All other assignments preserve
progress-insensitive knowledge.

2. Much of the related work on language-based declassification policies uses similar
type systems. Showing our security policies can be enforced using such systems
makes the results more general.

Typing of expressions Type rules for expressions have form Γ ` e : `,D where
` is the level of the expression, and D is a set of variables that may be declassified.
The declassification is the most interesting rule among expressions. It downgrades the
confidentiality level of the expression by returning ` u (P,U), and counts all variables
in e as declassified.

Γ ` n : `, ∅ Γ ` x : Γ (x), ∅
Γ ` e1 : `1, D1 Γ ` e2 : `2, D2

Γ ` e1 op e2 : `1 t `2, D1 ∪D2

Γ ` e : `,D

Γ ` declassify(e) : ` u (P,U), vars(e)
Γ, pc ` skip

Γ, pc ` c1 Γ, pc ` c2
Γ, pc ` c1; c2

Γ ` e : `,D ` t pc v Γ (x) ∀y ∈ D . Γ (y) v (S,T) D 6= ∅ =⇒ pc v (P,T)

Γ, pc ` x := e

Γ ` e : `, ∅ Γ, pc t ` ` c1 Γ, pc t ` ` c2
Γ, pc ` if e then c1 else c2

Γ ` e : `, ∅ Γ, pc t ` ` c
Γ, pc ` while e do c

pc v (P,U)

Γ, pc ` •
pc v (S,T) pc v Γ (x) Γ ` e : ` ` u (S,T) v Γ (x)

Γ, pc ` x := endorse(e)

Fig. 5: Type system: expressions and commands

Typing of commands Type rule for commands have form Γ, pc ` c. The rules are
standard for a security type system. We highlight typing of assignments, endorsement,
and holes.

Assignments have two extra clauses for when expression contains declassification
(D 6= ∅). It requires all variables that can be declassified have high integrity, and bounds
the pc-label by (P,T). This enforces that no declassification happens in untrusted or
secret contexts. These requirements guarantee that the information released by the de-
classification does not directly depend on the attacker-controlled variables.

14

Typing rule for endorsement requires that pc-label is trusted: pc v (S,T). Because
endorsed expressions preserve their confidentiality level we also check that x has the
right security level to store the result of the expression. This is done by demanding that
` u (S,T) v Γ (x), where taking meet of ` and (S,T) boosts integrity, but keeps the
confidentiality level of `.

The rule for holes forbids placing attacker-provided code in high confidentiality
contexts. For simplicity, we disallow declassification in the guards of if and while.

Soundness Soundness of the type system is stated by the following proposition.

Proposition 1 If Γ, pc ` c[~•] then for all attacks ~a, memories m, and traces ~t~r pro-
duced by 〈c[~a],m〉, where k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have that

R.→(c[~•],m,~a,~t) \ Φ(c[~•],m,~t~r) ⊆ R→(c[~•],m,~a,~t~r)
The proof of this and following propositions are given in the associated technical report.

7 Checked endorsement
Realistic applications endorse attacker-provided data based on certain conditions. For
instance, an SQL string that depends on user-provided input is executed if it passes
sanitization, a new password is accepted if the user can provide an old one, and a secret
key is accepted if nonces match. Because this is a recurring pattern in security-critical
applications, we argue for language support in the form of checked endorsements.

This section extends the language with checked endorsements and derives both se-
curity conditions and a typing rule for them. Moreover, we show checked endorsements
can be decomposed into a sequence of direct endorsements, and prove that for well-
typed programs the semantic conditions for robustness with checked endorsements and
with unchecked endorsements are the same.

Syntax and semantics In the scope of this section, we assume checked endorse-
ments are the only endorsement mechanism in the language. We introduce a syntax
for checked endorsements:

c[~•] ::= . . . | endorseη(x) if e then c else c
The semantics of this command is that a variable x is endorsed if the expression e
evaluates to true. If the check succeeds, the then branch is taken, and x is assumed to
have high integrity there. If the check fails, the else branch is taken. As with direct
endorsements, we assume checked endorsements in program text have unique labels η.
These labels may be omitted from the examples, but they are explicit in the semantics.

Endorsement events Checked endorsement events checked(η, v, b), record the unique
label of the endorsement command η, the value of variable that can potentially be en-
dorsed v, and a result of the check b, which can be either 0 or 1.

m(e) ↓ v v 6= 0

〈endorseη(x) if e then c1 else c2,m〉
checked(η,m(x),1)−→ 〈c1,m〉

m(e) ↓ v v = 0

〈endorseη(x) if e then c1 else c2,m〉
checked(η,m(x),0)−→ 〈c2,m〉

15

Irrelevant attacks For checked endorsement we define a suitable notion of irrelevant
attacks. The reasoning behind this is the following.

1. Both ~t and ~t′ reach the same endorsement statement: ηi = η′i.
2. At least one of them results in the positive endorsement: bi + b′i ≥ 1. This ensures

that if both traces do not take the branch then none of the attacks are ignored.
3. The endorsed values are different: vi 6= v′i. Otherwise, there should be no further

difference in what the attacker can influence along the trace.

The following definitions formalize the above construction.

Definition 18 (Irrelevant traces) Given a trace ~t, where endorsements are labeled as
checked(ηj , vj , bj), define a set of irrelevant traces based on the number of checked
endorsements in ~t as ψi(~t). Then ψ0(~t) = ∅, and

ψi(~t) = {~t′ | ~t′ = . . . checked(ηi−1, vi−1, bi−1) . . . checked(ηi, v′i, b
′
i) . . . }

such that (bi + b′i ≥ 1) ∧ (vi 6= v′i)

Define ψ(~t) ,
⋃
i ψi(~t) as a set of irrelevant traces w.r.t. ~t.

Definition 19 (Irrelevant attacks) Ψ(c[~•],m,~t) , {~a| 〈c[~a],m〉−→∗~t′ ∧ ~t′ ∈ ψ(~t)}

Using this definition, we can define security conditions for checked robustness.

Definition 20 (Progress-sensitive robustness with checked endorsement) Program
c[~•] satisfies progress-sensitive robustness with checked endorsement if for all memo-
ries m and attacks ~a, such that 〈c[~a],m〉−→∗~a〈c′,m′〉−→∗~r, and ~r contains a release
event, i.e., k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP~rP), we have

R.(c[~•],m,~a,~t) \ Ψ(c[~•],m,~t~r) ⊆ R(c[~•],m,~a,~t~r)

The progress-insensitive version is defined similarly, using progress-insensitive defini-
tion for release events and progress-insensitive versions of control and release control.

Example In program [•]; endorseη1(u) if u = u′ then low := u < h else skip,
the attacker can modify u and u′. This program is insecure because the unendorsed,
attacker-controlled variable u′ influences the decision to declassify. To see that Def-
inition 20 rejects this program, consider running it in memory with m(h) = 7, and
two attacks: a1, where attacker sets u := 5;u′ := 0, and a2, where attacker sets
u := 5;u′ = 5. Denote the corresponding traces up to endorsement by ~t1 and ~t2. We
have ~t1 = [(u, 5)(u′, 0)]checked(η1, 5, 0) and ~t2 = [(u, 5)(u′, 5)]checked(η1, 5, 1).
Because endorsement in the second trace succeeds, this trace also continues with a low
event (low , 1). Following Definition 18 we have that t1 6∈ ψ(~t2(low , 1)), implying a1 6∈
Ψ(c[~•],m,~t2(low , 1)). Therefore, a1 ∈ R.(c[~•],m,~a2,~t2)\Ψ(c[~•],m,~t2(low , 1)). On
the other hand, a1 6∈ R(c[~•],m,~a2,~t2(low , 1)) because a1 can produce no low events
corresponding to (low , 1).

16

Endorsing multiple variables The syntax for checked endorsements can be extended
to multiple variables with the following syntactic sugar, where ηi is an endorsement
label corresponding to variable xi:

endorse(x1, . . . xn) if e then c1 else c2 =⇒ endorseη1(x1) if e then
endorseη2(x2) if true then . . . c1 else skip . . . else c2

This is a semantically faithful encoding: the condition is checked as early as possible.

Typing checked endorsements To enforce programs with checked endorsements, we
extend the type system with the following general rule:

Γ ′ , Γ [xi 7→ xi u (S,T)] Γ ′ ` e : `′, D′ pc′ , pc t `′
pc′ v (S,T) Γ ′, pc′ ` c1 Γ, pc′ ` c2
Γ, pc ` endorse(x1, . . . , xn) if e then c1 else c2

The expression e is type-checked in an environment Γ ′ in which endorsed variables
x1, . . . xn have trusted integrity; its label `′ is joined to form auxiliary pc-label pc′. The
level of pc′ must be trusted, ensuring that endorsements happen in a trusted context,
and that no declassification in e depends on untrusted variables other than the xi (this
effectively subsumes the need to check individual variables inD′). Each of the branches
is type-checked with the program label set to pc′; however, for c1 we use the auxiliary
typing environment Γ ′, since the xi are trusted there.

Program [•]; endorse(u) if u = u′ then low := declassify(u < h) else skip
is rejected by this type system. Because variable u′ is not endorsed, the auxiliary pc-
label has untrusted integrity.

Relation to direct endorsements Finally, for well-typed programs we can safely trans-
late checked endorsements to direct endorsements using a translation in which a checked
endorsement of n variables is translated to n+ 1 direct endorsements. First, we uncon-
ditionally endorse the result of the check. The rest of the endorsements happen in the
then branch, before translation of c1. We save the results of the endorsements in tem-
porary variables t1 . . . tn and replace all occurrences of x1 . . . xn within c1 with the
temporary ones. All other commands are translated to themselves.

Jendorse(x1, . . . xn) if e then c1 else c2K =⇒ t0 := endorseη0(e); if t0
then t1 := endorseη1(x1); . . . tn := endorseηn

(xn); Jc1[ti/xi]K else Jc2K

The following proposition relates the security of the original and translated programs.

Proposition 2 (Relation of checked and direct endorsements) Given a program c[~•]
that only uses checked endorsements such that Γ, pc ` c[~•], then c[~•] satisfies progress-
(in)sensitive robustness for checked endorsements if and only Jc[~•]K satisfies progress-
(in)sensitive robustness for direct endorsements.

For non-typed programs, the relation does not hold. For instance, a program like
[•]; endorse(u) if u = u′ then c1 else c2 satisfies Defn. 20, but not Defn. 16.

17

8 Attacker power
In prior work, robustness controls the attacker’s ability to cause information release.
In the presence of endorsement, the attacker’s ability to influence trusted locations also
becomes an important security issue. To capture this influence, we introduce an integrity
dual to attacker knowledge, called attacker power. Similarly to low events, we define
trusted events as assignments to trusted variables and termination. Given a trace ~t, we
denote the trusted events in the trace as ~tT. We use notation t? for a single trusted event,
and ~t?. for a sequence of trusted events.

Definition 21 (Attacker power) Given a program c[~•], memorym, and trusted events
~t?, define p(c[~•],m,~t?) to be a set of attacks ~a which match trusted events ~t?:

p(c[~•],m,~t?) , {~a | 〈c[~a],m〉−→∗~t′ ∧ ~t? = ~t′T}

Attacker power is defined with respect to a given sequence of trusted events ~t?, starting
in memory m, and program c[~•]. The power returns the set of all attacks that agree with
~t? in their footprint on trusted variables.

Intuitively, a smaller set for attacker power means that the attacker has greater power
to influence trusted events. Similarly to progress knowledge, we define progress power,
characterizing which attacks lead to one more trusted event. This then allows us to
define robustness conditions for integrity, which have not previously been identified.

Definition 22 (Progress power) Given a program c[~•], memory m, and sequence of
trusted ~t?, define progress power p→(c[~•],m,~t?) as

p→(c[~•],m,~t?) , {~a | 〈c[~a],m〉−→∗~t′〈c
′,m′〉 ∧ ~t? = ~t′T ∧ 〈c′,m′〉−→∗t′′? }

Definition 23 (Progress-insensitive integrity robustness with endorsements) A pro-
gram c[~•] satisfies progress-insensitive robustness for integrity if for all memories m,
and for all traces ~tt? where t? is a trusted event, we have

p→(c[~•],m,~tT) \ Φ(c[~•],m,~tt?) ⊆ p(c[~•],m,~tTt?)

Irrelevant attacks are defined precisely as in Section 5. We omit the corresponding def-
initions for programs without endorsements and with checked endorsements.

The type system of Section 6 also enforces integrity robustness with endorsements,
rejecting insecure programs such as t := u and if (u1) then t := endorse(u2),
but accepting t := endorse(u). Moreover, a connection between checked and direct
endorsements, analogous to Proposition 2, holds for integrity robustness too.

9 Examples
Password update Figure 6 shows code for updating a password. The attacker con-

trols variables guess of level (P,U) and new_password of level (S,U). The variable
password has level (S,T) and variables nfailed and ok have level (P,T). The de-
classification on line 3 uses the untrusted variable guess. This variable, however, is
listed in the endorse clause on line 2; therefore, the declassification is accepted. The
initially untrusted variable new_password has to be endorsed to update the password
on line 5. The example also shows how other trusted variables—nfailed and ok—can
be updated in the then and else branches.

18

1 [•]
2 endorse(guess, new_password)

3 if (declassify(guess==password))

4 then

5 password = new_password;

6 nfailed = 0;

7 ok = true;

8 else

9 nfailed = nfailed + 1;

10 ok = false;

Fig. 6: Password update

1 [•]
2 endorse(req_time)

3 if (req_time <= now)

4 then

5 if (req_time >= embargo_time)

6 then return declassify(new_data)

7 else return old_data

8 else

9 return old_data

Fig. 7: Accessing embargoed information

Data sanitization Figure 7 shows an annotated version of the code from the intro-
duction, in which some information (new_data) is not allowed to be released until
time embargo_time. The attacker-controlled variable is req_time of level (P,U), and
new_data has level (S,T). The checked endorse ensures that the attacker cannot violate
the integrity of the test req_time >= embargo_time. (Variable now is high-integrity
and contains the current time). Without the checked endorse, the release of new_data
would not be permitted either semantically or by the type system.

10 Related work
Prior robustness definitions [13, 9], based on equivalence of low traces, do not differen-
tiate programs such as [•]; low := u < h; low ′ := h and [•]; low ′ := h; low := u < h;
Per dimensions of information release [18], the new security conditions cover not only
the “who” dimension, but are also sensitive to “where” information release happens.
Also, the security condition of robustness with endorsement does not suffer from the
occlusion problems of qualified robustness. Balliu and Mastroeni [5] derive sufficient
conditions for robustness using weakest precondition semantics. These conditions are
not precise enough for distinguishing the examples above, and, moreover, do not sup-
port endorsement.

Prior work on robustness semantics defines termination-insensitive security con-
ditions [13, 5]. Because the new framework is powerful enough to capture the secu-
rity of programs with intermediate observable events, it can describe the robustness of
nonterminating programs. Prior work on qualified robustness [13] uses a non-standard
scrambling semantics in which qualified robustness unfortunately becomes a possibilis-
tic condition, leading to anomalies such as reachability of dead code. The new frame-
work avoids such artifacts because it uses a standard, deterministic semantics.

Checked endorsement was introduced informally in the Swift framework [8] as a
convenient way to implement complex security policies. The current paper is the first
to formalize and to study the properties of checked endorsement.

Our semantic framework is based on the definition of attacker knowledge, devel-
oped in prior work introducing gradual release [2]. Attacker knowledge is used for ex-
pressing confidentiality policies in recent work [6, 1, 3, 7]. However, none of this work
considers integrity; applying attacker-centric reasoning to integrity policies is novel.

19

11 Conclusion
We have introduced a new knowledge-based framework for semantic security condi-
tions for information security with declassification and endorsement. A key technical
idea is to characterize the power and control of the attacker over information in terms of
sets of similar attacks. Using this framework, we can express semantic conditions that
more precisely characterize the security offered by a security type system, and derive a
satisfactory account of new language features such as checked endorsement.

References
1. A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks more

than just a bit. In Proc. ESORICS 2008, pages 333–348, October 2008.
2. A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key release

policies. In Proc. IEEE Symp. on Security and Privacy, pages 207–221, May 2007.
3. A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic languages.

In Proc. IEEE Computer Security Foundations Symposium, July 2009.
4. Aslan Askarov and Andrei Sabelfeld. Security-typed languages for implementation of cryptographic

protocols: A case study. In Proc. 10th European Symposium on Research in Computer Security (ES-
ORICS), number 3679 in Lecture Notes in Computer Science. Springer-Verlag, September 2005.

5. M. Balliu and I. Mastroeni. A weakest precondition approach to active attacks analysis. In PLAS ’09:
Proc. of the ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security,
pages 59–71. ACM, 2009.

6. A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies and modular static
enforcement. In Proc. IEEE Symp. on Security and Privacy, pages 339–353, May 2008.

7. N. Broberg and D. Sands. Flow-sensitive semantics for dynamic information flow policies. In S. Chong
and D. Naumann, editors, ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis
for Security (PLAS 2009), Dublin, June 15 2009. ACM.

8. S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applications via
automatic partitioning. In Proc. SOSP 2007, pages 31–44, October 2007.

9. S. Chong and A. C. Myers. Decentralized robustness. In CSFW ’06: Proc. of the 19th IEEE workshop on
Computer Security Foundations, pages 242–256, Washington, DC, USA, 2006. IEEE Computer Society.

10. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system. In Proc. IEEE
Symp. on Security and Privacy, pages 354–368, May 2008.

11. J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security
and Privacy, pages 11–20, April 1982.

12. A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp. on Principles
of Programming Languages, pages 228–241, January 1999.

13. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness.
J. Computer Security, 14(2):157–196, May 2006.

14. Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control. In Proc.
17th ACM Symp. on Operating System Principles (SOSP), pages 129–142, Saint-Malo, France, 1997.

15. Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong, and Nathaniel Nystrom. Jif 3.0:
Java information flow. Software release, http://www.cs.cornell.edu/jif, July 2006.

16. P. Ørbæk and J. Palsberg. Trust in the λ-calculus. J. Functional Programming, 7(6):557–591, 1997.
17. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in

Communications, 21(1):5–19, January 2003.
18. A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Computer Security,

17(5):517–548, January 2009.
19. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J. Computer Security,

4(3):167–187, 1996.
20. Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proc. 14th IEEE Computer Security

Foundations Workshop, pages 15–23, June 2001.
21. Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C. Myers. Secure program partition-

ing. ACM Transactions on Computer Systems, 20(3):283–328, August 2002.

20

