
ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY

ASLAN ASKAROV AND ANDREW C. MYERS

Department of Computer Science, Cornell University
e-mail address: aslan@cs.cornell.edu

Department of Computer Science, Cornell University
e-mail address: andru@cs.cornell.edu

ABSTRACT. Language-based information flow methods offer a principled way to enforce strong
security properties, but enforcing noninterference is too inflexible for realistic applications. Security-
typed languages have therefore introduced declassification mechanisms for relaxing confidentiality
policies, and endorsement mechanisms for relaxing integrity policies. However, a continuing chal-
lenge has been to define what security is guaranteed when such mechanisms are used. This paper
presents a new semantic framework for expressing security policies for declassification and endorse-
ment in a language-based setting. The key insight is that security can be characterized in terms of
the influence that declassification and endorsement allow to the attacker. The new framework in-
troduces two notions of security to describe the influence of the attacker. Attacker control defines
what the attacker is able to learn from observable effects of this code; attacker impact captures the
attacker’s influence on trusted locations. This approach yields novel security conditions for checked
endorsements and robust integrity. The framework is flexible enough to recover and to improve on the
previously introduced notions of robustness and qualified robustness. Further, the new security con-
ditions can be soundly enforced by a security type system. The applicability and enforcement of the
new policies is illustrated through various examples, including data sanitization and authentication.

1. Introduction
Many common security vulnerabilities can be seen as violations of either confidentiality or integrity.
As a general way to prevent these information security vulnerabilities, information flow control has
become a popular subject of study, both at the language level [23] and at the operating-system level
(e.g., [14, 12, 30]). The language-based approach holds the appeal that the security property of
noninterference [13], can be provably enforced using a type system [27]. In practice, however,
noninterference is too rigid: many programs considered secure need to violate noninterference in
limited ways.

Using language-based downgrading mechanisms such as declassification [17, 21] and endorse-
ment [20, 29], programs can be written in which information is intentionally released, and in which
untrusted information is intentionally used to affect trusted information or decisions. Declassifica-
tion relaxes confidentiality policies, and endorsement relaxes integrity policies. Both endorsement
and declassification have been essential for building realistic applications, such as various applica-
tions built with Jif [15, 18]: games [5], a voting system [11], and web applications [9].

A continuing challenge is to understand what security is obtained when code uses downgrad-
ing. This paper contributes a more precise and satisfactory answer to this question, particularly

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

© Aslan Askarov and Andrew C. Myers
Creative Commons

1

2 ASLAN ASKAROV AND ANDREW C. MYERS

clarifying how the use of endorsement weakens confidentiality. While much work has been done
on declassification (usefully summarized by Sands and Sabelfeld [24]), there is comparatively little
work on the interaction between confidentiality and endorsement.

To see such an interaction, consider the following notional code example, in which a service
holds both old data (old_data) and new data (new_data), but the new data is not to be released until
time embargo_time. The variable new_data is considered confidential, and must be declassified
to be released:
if request_time >= embargo_time

then return declassify(new_data)

else return old_data

Because the requester is not trusted, the requester must be treated as a possible attacker. Suppose
the requester has control over the variable request_time, which we can model by considering that
variable to be low-integrity. Because the intended security policy depends on request_time, the
attacker controls the policy that is being enforced, and can obtain the confidential new data earlier
than intended. This example shows that the integrity of request_time affects the confidentiality
of new_data. Therefore, the program should be considered secure only when the guard expression,
request_time >= embargo_time, is high-integrity.

A different but reasonable security policy is that the requester may specify the request time as
long as the request time is in the past. This policy could be enforced in a language with endorsement
by first checking the low-integrity request time to ensure it is in the past; then, if the check succeeds,
endorsing it to be high-integrity and proceeding with the information release. The explicit endorse-
ment is justifiable because the attacker’s actions are permitted to affect the release of confidential
information as long as adversarial inputs have been properly sanitized. This is a common pattern in
servers that process possibly adversarial inputs.

Robust declassification has been introduced in prior work [28, 16, 10] as a semantic condition
for secure interactions between integrity and confidentiality. The prior work also develops type sys-
tems for enforcing robust declassification, which are implemented as part of Jif [18]. However, prior
security conditions for robustness are not satisfactory, for two reasons. First, these prior conditions
characterize information security only for terminating programs. A program that does not terminate
is automatically considered to satisfy robust declassification, even if it releases information improp-
erly during execution. Therefore the security of programs that do not terminate, such as servers,
cannot be described. A second and perhaps even more serious limitation is that prior security condi-
tions largely ignore the possibility of endorsement, with the exception of qualified robustness [16].
Qualified robustness gives the endorse operation a somewhat ad-hoc, nondeterministic semantics,
to reflect the attacker’s ability to choose the endorsed value. This approach operationally models
what the attacker can do, but does not directly describe the attacker’s control over confidentiality.
The introduction of nondeterminism also makes the security property possibilistic. However, possi-
bilistic security properties have been criticized because they can weaken under refinement [22, 25].

The main contribution of this paper is a general, language-based semantic framework for ex-
pressing information flow security and semantically capturing the ability of the attacker to influence
both the confidentiality and integrity of information. The key building blocks for this semantics
are attacker knowledge [1] and its (novel) dual, attacker impact, which respectively describe what
attackers can know and what they can affect. Building upon attacker knowledge, the interaction of
confidentiality and integrity, which we term attacker control, can be characterized formally. The
robust interaction of confidentiality and integrity can then be captured cleanly as a constraint on at-
tacker control. Further, endorsement is naturally represented in this framework as a form of attacker
control, and a more satisfactory version of qualified robustness can be defined. All these security

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 3

conditions can be formalized in both progress-sensitive and progress-insensitive variants, allowing
us to describe the security of both terminating and nonterminating systems.

We show that the progress-insensitive variants of these improved security conditions are en-
forced soundly by a simple security type system. Recent versions of Jif have added a checked
endorsement construct that is useful for expressing complex security policies [9], but whose se-
mantics were not precisely defined; this paper gives semantics, typing rules and a semantic security
condition for checked endorsement, and shows that checked endorsement can be translated faith-
fully into simple endorsement at both the language and the semantic level. Our type system can
easily be adjusted to enforce the progress-sensitive variants of the security conditions, as has been
shown in the literature [26, 19].

The rest of this paper is structured as follows. Section 2 shows how to define information
security in terms of attacker knowledge. Section 3 introduces attacker control. Section 4 defines
progress-sensitive and progress-insensitive robustness using the new framework. Section 5 extends
this to improved definitions of robustness that allow endorsements, generalizing qualified robust-
ness. A type system for enforcing these robustness conditions is presented in Section 6. The checked
endorsement construct appears in Section 7, which introduces a new notion of robustness that allows
checked endorsements, and shows that it can be understood in terms of robustness extended with
simple endorsements. Section 8 introduces attacker impact. Additional examples are presented in
Section 9, related work is discussed in Section 10, and Section 11 concludes.

This paper is an extended version of a previous paper by the same authors [4]. The significant
changes include proofs of all the main theorems, a semantic rather than syntactic definition of fair
attacks, and a renaming of “attacker power” to “attacker impact”.

2. Semantics

Information flow levels. We assume two security levels for confidentiality—public and secret—
and two security levels for integrity—trusted and untrusted. These levels are denoted respectively
P,S and T,U. We define information flow orderingv between these two levels: P v S, and T v U.
The four levels define a security lattice, as shown on Figure 1. Every point on this lattice has two
security components: one for confidentiality, and one for integrity. We extend the information
flow ordering to elements on this lattice: `1 v `2 if the ordering holds between the corresponding
components. As is standard, we define join `1 t `2 as the least upper bound of `1 and `2, and
meet `1 u `2 as the greatest lower bound of `1 and `2. All four lattice elements are meaningful;
for example, it is possible for information to be both secret and untrusted when it depends on both
secret and untrusted (i.e., attacker-controlled) values. This lattice is the simplest possible choice for
exploring the topics of this paper; however, the results of this paper straightforwardly generalize to
the richer security lattices used in other work on robustness [10].

Language and semantics. We consider a simple imperative language with syntax presented in
Figure 2. The semantics of the language is fairly standard and is given in Figures 3 and 4. For
expressions, we define big-step evaluation of the form 〈e,m〉 ↓ v, where v is the result of evaluating
expression e in memory m. For commands, we define a small-step operational semantics, in which
a single transition is written as 〈c,m〉−→t〈c′,m′〉, where c and m are the initial command and
memory, and c′ and m′ are the resulting command and memory. The only unusual feature is the
annotation t on each transition, which we call an event. Events record assignments: an assignment
to variable x of value v is recorded by an event (x, v). This corresponds to our attacker model, in

4 ASLAN ASKAROV AND ANDREW C. MYERS

P, T

P, U

S, U

S, T

FIGURE 1. Information
flow lattice

e ::= n | x | e op e
c ::= skip | x := e | c; c

| if e then c1 else c2 | while e do c

FIGURE 2. Syntax of the language

〈n,m〉 ↓ n 〈x,m〉 ↓ m(x)
〈e1,m〉 ↓ v1 〈e2,m〉 ↓ v2 v = v1 op v2

〈e1 op e2,m〉 ↓ v

FIGURE 3. Semantics of expressions

〈skip,m〉−→〈stop,m〉
〈e,m〉 ↓ v

〈x := e,m〉−→(x,v)〈stop,m[x 7→ v]〉

〈c1,m〉−→t〈c′1,m′〉
〈c1; c2,m〉−→t〈c′1; c2,m′〉

〈c1,m〉−→t〈stop,m′〉
〈c1; c2,m〉−→t〈c2,m′〉

〈e,m〉 ↓ n n 6= 0

〈if e then c1 else c2,m〉−→〈c1,m〉
〈e,m〉 ↓ n n = 0

〈if e then c1 else c2,m〉−→〈c2,m〉

〈e,m〉 ↓ n n 6= 0

〈while e do c,m〉−→〈c; while e do c,m〉
〈e,m〉 ↓ n n = 0

〈while e do c,m〉−→〈stop,m〉

FIGURE 4. Semantics of commands

which the attacker may only observe assignments to public variables. We write 〈c,m〉−→∗~t to mean
that trace ~t is produced starting from 〈c,m〉 using zero or more transitions. Each trace ~t is composed
of individual events t1 ·t2 · · · tk · · · , and a prefix of ~t up to the i-th event is denoted as ~ti; we use
the operator · to denote the concatenation of two traces or events. If a transition does not affect
memory, its event is empty, which is either written as ε or is omitted, e.g.: 〈c,m〉−→〈c′,m′〉.

Finally, we assume that the security environment Γ maps program variables to their security
levels. Given a memory m, we write mP for the public part of the memory; similarly, mT is the
trusted part of m. We write m =T m

′ when memories m and m′ agree on their trusted parts, and
m =P m

′ when m and m′ agree on their public parts.

2.1. Attacker knowledge
This section provides background on the attacker-centric model for information flow security [1].
We recall definitions of attacker knowledge, progress knowledge, and divergence knowledge, and
introduce progress-(in)sensitive release events.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 5

Low events. Among the events that are generated during a trace, we distinguish a sequence of low
(or public) events. Low events correspond to observations that an attacker can make during a run of
the program. We assume that the attacker may observe individual assignments to public variables.
Furthermore, if the program terminates, we assume that a termination event ⇓may also be observed
by the attacker. If attacker can detect divergence of programs (cf. Definition 3) then divergence ⇑ is
also a low event.

Given a trace ~t, low events in that trace are denoted as ~tP. A single low event is often denoted as
`, and a sequence of low events is denoted as ~̀. We overload the notation for semantic transitions,
writing 〈c,m〉−→∗~̀ if only low events produced from configuration 〈c,m〉 are relevant; that is,
there is a trace ~t such that 〈c,m〉−→∗~t ∧~tP = ~̀. Low events are the key element in the definition of
attacker knowledge [1].

The knowledge of the attacker is described by the set of initial memories compatible with low
observations. Any reduction in this set means the attacker has learned something about secret parts
of the initial memory.

Definition 1 (Attacker knowledge). Given a sequence of low events ~̀, initial low memory mP, and
program c, attacker knowledge is

k(c,mP, ~̀) , {m′ |mP = m′P ∧ 〈c,m′〉−→∗~̀}

Attacker knowledge gives a handle on what information the attacker learns with every low
event. The smaller the knowledge set, the more precise is the attacker’s information about secrets.
Knowledge is monotonic in the number of low events: as the program produces low events, the
attacker may learn more about secrets.

Two extensions of attacker knowledge are useful: progress knowledge [3, 2] and divergence
knowledge [3].

Definition 2 (Progress knowledge). Given a sequence of low events ~̀, initial low memory mP, and
a program c, define progress knowledge k→(c,mP, ~̀) as

k→(c,mP, ~̀) , {m′ |m′P = mP ∧ ∃`′ . 〈c,m′〉−→∗~̀〈c′′,m′′〉−→∗`′}

Progress knowledge represents the information the attacker obtains by seeing public events ~̀
followed by some other public event. Progress knowledge and attacker knowledge are related as
follows: given a program c, memorym and a sequence of low events `1 · · · `n obtained from 〈c,m〉,
we have that for all i < n,

k(c,mP, ~̀i) ⊇ k→(c,mP, ~̀i) ⊇ k(c,mP, ~̀i+1)

To illustrate this with an example, consider program l := 0; (while h = 0 do skip); l := h with
initial memory m(h) = 7. This program produces a sequence of two low events (l, 0)·(l, 7). The
knowledge after the first event k(c,mP, (l , 0)) is a set of all possible memories that agree withm on
the public parts and can produce the low event (l , 0). Note that no low events are possible after the
first assignment unless h is non-zero. Progress knowledge reflects this: k→(c,mP, (l , 0)) is a set of
memories such that h 6= 0. Finally, the knowledge after two events k(c,mP, (l , 0)·(l , 7)) is a set of
memories where h = 7.

Using attacker knowledge, one can express many confidentiality policies [7, 2, 8]. For exam-
ple, a strong notion of progress-sensitive noninterference [13] can be expressed by demanding that
knowledge between low events does not change:

k(c,mP, ~̀i) = k(c,mP, ~̀i+1)

6 ASLAN ASKAROV AND ANDREW C. MYERS

Progress knowledge enables expressing more permissive policies, such as progress-insensitive
noninterference, which allows leakage of information, but only via termination channels (in [3]
it is called termination-insensitive). This is expressed by requiring equivalence of the progress
knowledge after seeing i events with the knowledge obtained after i+ 1-th event:

k→(c,mP, ~̀i) = k(c,mP, ~̀i+1)

In the example l := 0; (while h = 0 do skip); l := 1, the knowledge inclusion between the two
events is strict: k(c,mP, (l, 0)) ⊃ k(c,mP, (l, 0) ·(l, 1)). Therefore, the example does not satisfy
progress-sensitive noninterference. On the other hand, the low event that follows the while loop
does not reveal more information than the knowledge about the existence of that event. Formally,
k→(c,mP, (l, 0)) = k(c,mP, (l, 0) ·(l, 1)), hence the program satisfies progress-insensitive nonin-
terference.

These definitions also allow us to reason about knowledge changes along parts of the traces.
We say that knowledge is preserved in a progress-(in)sensitive way along a part of a trace, assuming
that the respective knowledge equality holds for the low events that correspond to that part.

Next, we extend possible observations to a divergence event ⇑ (we write 〈c,m〉 ⇑ to mean
configuration 〈c,m〉 diverges). For attackers that can observe program divergence ⇑, we define
knowledge on the sequence of low events that includes divergence:

Definition 3 (Divergence knowledge).

k(c,mP, ~̀ ⇑) , {m′ |m′P = mP ∧ 〈c,m′〉−→∗~̀〈c′′,m′′〉 ∧ 〈c′′,m′′〉 ⇑}

Note that the above definition does not require divergence immediately after ~̀— it allows for
more low events to be produced after ~̀. Divergence knowledge is used in Section 4.

Let us consider events at which knowledge preservation is broken. We call these events release
events.

Definition 4 (Release events). Given a program c and a memory m, such that

〈c,m〉−→∗~̀〈c′,m′〉−→∗r
• r is a progress-sensitive release event, if k(c,mP, ~̀) ⊃ k(c,mP, ~̀·r)
• r is a progress-insensitive release event, if k→(c,mP, ~̀) ⊃ k(c,mP, ~̀·r)

It is easy to validate that a progress-insensitive release event is also a progress-sensitive event.
For example, in the program low := 1; low ′ := h, the second assignment is both a progress-sensitive
and a progress-insensitive release event. The reverse is not true — in the program while h =
0 do skip; low := 1 the assignment to low is a progress-sensitive release event, but is not a
progress-insensitive release event.

3. Attacks
To reason about program security in the presence of active attacks, we introduce a formal model of
the attacker. Our formalization follows that in [16], where attacker-provided code can be injected
into the program. This section provides examples of how attacker-injected code may affect attacker
knowledge, followed by a semantic characterization of the attacker’s influence on knowledge.

First, we extend the syntax to allow execution of attacker-controlled code:

c[~•] ::= . . . | [•]

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 7

Next, we introduce notation [~t] to highlight that the trace ~t is produced by attacker-injected
code. The semantics of the language is extended accordingly.

〈a,m〉−→t〈a′,m′〉
〈[a],m〉−→[t]〈[a′],m′〉

〈[stop],m〉−→〈stop,m〉

We limit attacks that can be substituted into holes to so-called fair attacks, which represent rea-
sonable limitations on the impact of the attacker. Unlike earlier approaches, where fair attacks are
defined syntactically [16, 10], we define them semantically. This allows us to include a larger set
of attacks. To ensure that we include all syntactic attacks we make use of a reachability translation,
explained below.

Roughly, we require a fair attack to not give new knowledge and to not modify trusted variables.
A refinement of this idea is that an attack is fair if it gives new knowledge but only because the
reachability of the attack depends on a secret. To capture this refinement, we define an auxiliary
translation to make reachability of attacks explicit. We assume a trusted, public variable reach that
does not appear in the source of c[~•]. Let operator T be a source-to-source transformation of c[~•]
that makes reachability of attacks explicit.

Definition 5 (Explicit reachability translation). Given a program c[~•], define (T (c[~•]) as follows:
• T ([•]) =⇒ reach := reach + 1; [•]
• T (c1; c2) =⇒ T (c1);T (c2)
• T (if e then c1 else c2) =⇒ if e then T (c1) else T (c2)
• T (while e do c) =⇒ while e do T (c)
• T (c) =⇒ c for all other commands c

The formal definition uses that any trace ~t can be represented as a sequence of subtraces ~t1 ·
[~t2] · · ·~t2∗n−1·[~t2∗n], where even-numbered subtraces correspond to the events produced by attacker-
controlled code.

Given a trace ~t, we denote the trusted events in the trace as ~tT. We use notation t? for a single
trusted event, and ~t? for a sequence of trusted events.

Definition 6 (Fair attack). Given a program c[~•], such that T (c[~•]) =⇒ c [~•], say that ~a is a fair
attack on c[~•] if for all memories m, such that 〈c [~a],m〉−→∗~t and ~t = ~t1·[~t2] · · ·~t2∗n−1·[~t2∗n], i.e.,
there are 2n intermediate configurations 〈cj ,mj〉, 1 ≤ j ≤ 2n, for which

〈c [~a],m〉−→∗~t1〈c1,m1〉−→∗[~t2]〈c2,m2〉−→∗~t3 . . .−→
∗
[~t2n]
〈c2n,m2n〉 . . .

then for all i, 1 ≤ i ≤ n, it holds that k(c [~a],m,~t1 · · ·~t2i−1) = k(c [~a],m,~t1 · · · [~t2i]) and
~t2i? = ε.

For example, in the program if h > 0 then [•] else skip the attacks a1 = [low := 1] and
attack a2 = [low := h > 0] are fair, but attack a3 = [low := h] is not.

3.1. Examples of attacker influence
This section presents a few examples of attacker influence on knowledge. We also introduce pure
availability attacks and progress attacks, to which we refer later in this section.

In the examples below, we use notation [(u, v)] when a low event (u, v) is generated by attacker-
injected code.

Consider program [•]; low := u > h; where h is a secret variable, and u is an untrusted public
variable. The attacker’s code executes before the low assignment and may change the value of u.

8 ASLAN ASKAROV AND ANDREW C. MYERS

Consider memory m, where m(h) = 7, and the two attacks a1 = u := 0 and a2 = u := 10.
These attacks result in different values being assigned to variable low . The first trace results in low
events [(u, 0)]·(low , 0), while the second trace results in low events [(u, 10)]·(low , 1). Therefore,
the knowledge about the secret is different in each trace. We have

k(c[a1],mP, [(u, 0)]·(low , 0)) = {m′ |m′(h) ≥ 0}
k(c[a2],mP, [(u, 10)]·(low , 1)) = {m′ |m′(h) < 10}

Clearly, this program gives the attacker some control over what information about secrets he learns.
Observe that it is not necessary for the last assignment to differ in order for the knowledge to be dif-
ferent. For example, consider attack a3 = u := 5. This attack results in low events [(u, 5)]·(low , 0),
which do the same assignment to low as a1 does. Attacker knowledge, however, is different from
that obtained by a1:

k(c[a3],mP, [(u, 5)]·(low , 0)) = {m′ |m′(h) ≥ 5}
Next, consider program [•]; low := h. This program gives away knowledge about the value of

h independently of untrusted variables. The only way for the attacker to influence what information
he learns is to prevent that assignment from happening at all, which, as a result, will prevent him
from learning that information. This can be done by an attack such as a = while true do skip,
which makes the program diverge before the assignment is reached. We call attacks like this pure
availability attacks. Another example of a pure availability attack is in the program [•]; (while u =
0 do skip); low := h. In this program, any attack that sets u to 0 prevents the assignment from
happening.

Consider another example: [•]; while u < h′ do skip; low := 1. As in the previous example,
the value of u may change the reachability of low := 1. Assuming the attacker can observe diver-
gence, this is not a pure availability attack, because diverging before the last assignment gives the
attacker additional secret information, namely that u < h′. New information is also obtained if the
attacker sees the low assignment. We name attacks like this progress attacks. In general, a progress
attack is an attack that leads to program divergence in a way that observing that divergence (i.e.,
detecting there is no progress) gives new knowledge to the attacker.

3.2. Attacker control
We represent attacker control as a set of attacks that are similar in their influence on knowledge.
Intuitively, if a program leaks no information to the attacker, the control corresponds to all possible
attacks. In general, the more attacks are similar, the less influence the attacker has. Moreover, the
control is a temporal property and depends on the trace that has been currently produced. The longer
a trace is, the more influence an attack may have, and the smaller the control set is.

Similar attacks. The key element in the definition of control is specifying when two attacks are
similar. Given a program c[~•], memory m, consider two attacks ~a and~b that produce traces ~t and ~q
respectively:

〈c[~a],m〉−→∗~t and 〈c[~b],m〉−→∗~q
We compare ~a and ~b based on how they change attacker knowledge along their respective traces.
First, if knowledge is preserved along a subtrace of one of the traces, say ~t, it must be preserved
along a subtrace of ~q as well. Second, if at some point in ~t there is a release event (x, v), there must
be a matching low event (x, v) in ~q, and the attacks are similar along the rest of the traces.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 9

x, v

y, u

z, w

uncertainty uncertainty

low events low events

FIGURE 5. Similar attacks and traces

Visually, this requirement is described by the two diagrams in Figure 5. Each diagram shows
the change of knowledge as more low events are produced. Here the x-axis corresponds to low
events, and the y-axis reflects the attacker’s uncertainty about initial secrets. Whenever one of the
traces reaches a release event, depicted by vertical drops, there must be a corresponding low event
in the other trace, such that the two events agree. This is depicted by the dashed lines between the
two diagrams.

Formally, these requirements are stated using the following definitions.

Definition 7 (Knowledge segmentation). Given a program c, memory m, and a trace ~t, a sequence
of indexes p1 . . . pN such that p1 < p2 · · · < pN and ~tP = `1...p1 ·`p1+1...p2 · · · `pN−1+1...pN is called

• progress-sensitive knowledge segmentation of size N , if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k(c,mP, ~̀i) = k(c,mP, ~̀i+1), denoted by
Seg(c,m,~t, p1 . . . pN).
• progress-insensitive knowledge segmentation of size N if
∀j ≤ N, ∀i . pj−1 + 1 ≤ i < pj . k→(c,mP, ~̀i) = k(c,mP, ~̀i+1), denoted by
Seg→(c,m,~t, p1 . . . pN).

Low events pi + 1 for 1 ≤ i < N are called segmentation events.

Note that given a trace, there can be more than one way to segment it, and for every trace
consisting of n low events, this can be trivially achieved by a segmentation of size n. We use
knowledge segmentation to define attack similarity:

Definition 8 (Similar attacks and traces∼c[~•],m). Given a program c[~•], memorym, and two attacks
~a and~b that produce traces ~t and ~q, define ~a and~b as similar along ~t and ~q for the progress-sensitive
attacker, if there are two segmentations p1 . . . pN and p′1 . . . p

′
N (for some N) such that

• Seg(c[~a],m,~t, p1 . . . pN),
• Seg(c[~b],m, ~q, p′1 . . . p

′
N), and

• ∀i . 1 ≤ i < N . tPpi+1 = qPp′i+1.
For the progress-insensitive attacker, the definition is similar except that it uses progress-insensitive
segmentation Seg→. If two attack–trace pairs are similar, we write (~a,~t) ∼c[~•],m (~b, ~q) (for progress-
insensitive similarity, (~a,~t) ∼c[~•],m→ (~b, ~q)).

The construction of Definitions 7 and 8 can be illustrated by program

[•]; if u then (while h ≤ 100 do skip) else skip; low1 := 0; low2 := h > 100

Consider memory with m(h) = 555, and two attacks a1 = u := 1, and a2 = u := 0. Both attacks
reach the assignments to low variables. However, for a2 the assignment to low2 is a progress-
insensitive release event, while for a1 the knowledge changes at an earlier assignment.

10 ASLAN ASKAROV AND ANDREW C. MYERS

Attacker control. We define attacker control with respect to an attack ~a and a trace ~t as the set of
attacks that are similar to the given attack in its influence on knowledge.

Definition 9 (Attacker control (progress-sensitive)).

R(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m (~b, ~q)}

To illustrate how attacker control changes, consider program [•]; low := u < h; low ′ := h
where u is an untrusted variable and h is a secret trusted variable. To understand attacker control
of this program, we consider an initial memory m(h) = 7 and attack a = u := 5. The low event
(low , 1) in this trace is a release event. The attacker control is the set of all attacks that are similar
to a and trace [(u := 5)], (low , 1) in its influence on knowledge. This corresponds to attacks that
set u to values such that u < 7. The assignment to low ′ changes attacker knowledge as well, but
the information that the attacker gets does not depend on the attack: any trace starting in m and
reaching the second assignment produces the low event (low ′, 7); hence, the attacker control does
not change at that event.

Consider the same example but with the two assignments swapped: [•]; low ′ := h; low :=
u < h. The assignment to low ′ is a release event that the attacker cannot affect. Hence the control
includes all attacks that reach this assignment. The result of the assignment to low depends on
u. However, this result does not change attacker knowledge. Indeed, in this program, the second
assignment is not a release event at all. Therefore, the attacker control is simply all attacks that
reach the first assignment.

Progress-insensitive control. For progress-insensitive security, attacker control is defined similarly
using the progress-insensitive comparison of attacks.

Definition 10 (Attacker control (progress-insensitive)).

R→(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q))}

Consider program [•]; while u < h do skip; low := 1. Here, any attack produces a trace
that preserves progress-insensitive noninterference. If the loop is taken, the program produces no
low events, hence, it gives no new knowledge to the attacker. If the loop is not taken, and the low
assignment is reached, this assignment preserves attacker knowledge in a progress-insensitive way.
Therefore, the attacker control is all attacks.

4. Robustness

Release control. This section defines release control R., which captures the attacker’s influence
on release events. Intuitively, release control expresses the extent to which an attacker can affect the
decision to produce some release event.

Definition 11 (Progress-sensitive release control).

R.(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m (~b, ~q) ∧

(∃~r′ . k(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ·~r′P)

∨ k(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ⇑)

∨ 〈c[~b],m〉 ⇓)}

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 11

release events

attacks

R⊲

R

(A) Release control
release events

attacks

R⊲

R

(B) Robustness

FIGURE 6. Release control and robustness

The definition for release control is based on the one for attacker control with the three addi-
tional clauses, explained below. These clauses restrict the set of attacks to those that either terminate
or produce a release event. Because the progress-sensitive attacker can also learn new information
by observing divergence, the definition contains an additional clause (on the third line) that uses
divergence knowledge to reflect that.

Figure 6a depicts the relationship between release control and attacker control, where the x-
axis corresponds to low events, and the y-axis corresponds to attacks. The solid line depicts attacker
control R, where vertical lines correspond to release events. The gray area denotes release control
R.. In general, for a given attack ~a and a corresponding trace ~t·~r, where ~r contains a release event,
we have the following relation between release control and attacker control:

R(c[~•],m,~a,~t) ⊇ R.(c[~•],m,~a,~t) ⊇ R(c[~•],m,~a,~t·~r) (4.1)

Note the white gaps and the gray release control above the dotted lines on Figure 6a. The white
gaps correspond to difference R(c[~•],m,~a,~t) \R.(c[~•],m,~a,~t). This is a set of attacks that do not
produce further release events and that diverge without giving any new information to the attacker—
pure availability attacks. The gray zones above the dotted lines are more interesting. Every such
zone corresponds to the difference R.(c[~•],m,~a,~t) \ R(c[~•],m,~a,~t ·~r). In particular, when this
set is non-empty, the attacker can launch attacks corresponding to each of the last three lines of
Definition 11:

(1) either trigger a different release event ~r′, or
(2) cause program to diverge in a way that also releases information, or
(3) prevent a release event from happening in a way that leads to program termination

Absence of such attacks constitutes the basis for our security conditions in Definitions 13 and 14.
Before moving on to these definitions, we introduce the progress-insensitive variant of release con-
trol.

Definition 12 (Release control (progress-insensitive)).

R.→(c[~•],m,~a,~t) , {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q) ∧

(∃~r′ . k→(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ·~r′P) ∨ 〈c[~b],m〉 ⇓)}

This definition uses the progress-insensitive variants of similar attacks and release events. It
also does not account for knowledge obtained from divergence.

With the definition of release control at hand we can now define semantic conditions for ro-
bustness. The intuition is that all attacks leading to release events should lead to the same release
event. Formally, this is defined as inclusion of release control into attacker control, where release
control is computed on the prefix of the trace without a release event.

12 ASLAN ASKAROV AND ANDREW C. MYERS

Definition 13 (Progress-sensitive robustness). Program c[~•] satisfies progress-sensitive robustness
if for all memories m, attacks ~a, and traces ~t~r, such that 〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r and ~r contains

a release event, i.e., k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP ·~rP), we have

R.(c[~•],m,~a,~t) ⊆ R(c[~•],m,~a,~t·~r)

Note that because of Equation 4.1, set inclusion in the above definition could be replaced with
strict equality, but we use ⊆ for compatibility with future definitions. Figure 6b illustrates the
relation between release control and attacker control for robust programs. Note how release control
is bounded by the attacker control at the next release event.

Examples. We illustrate the definition of robustness with a few examples.
Consider program [•]; low := u < h, and memory such that m(h) = 7. This program is

rejected by Definition 13. To see this, pick an a = u := 5, and consider the part of the trace
preceding the low assignment. Release control R.(c[~•],m, a, [(u, 5)]) is all attacks that reach the
assignment to low . On the other hand, the attacker control R(c[~•],m, a, [(u, 5)]·(low , 1)) is the set
of all attacks where u < 7, which is smaller than R.. Therefore this program does not satisfy the
condition.

Program [•]; low := h; low ′ := u < h satisfies robustness. The only release event here
corresponds to the first assignment. However, because the knowledge given by that assignment does
not depend on untrusted variables, the release control includes all attacks that reach the assignment.

Program [•]; if u > 0 then low := h else skip is rejected. Consider memory m(h) = 7,
and attack a = u := 1 that leads to low trace [(u, 1)] · (low , 7). The attacker control for this
attack and trace is the set of all attacks such that u > 0. On the other hand, release control
R.(c[~•],m,~a, [(u, 1)]) is the set of all attacks that lead to termination, which includes attacks such
that u ≤ 0. Therefore, the release control corresponds to a bigger set than the attacker control.

Program [•]; while u > 0 do skip; low := h is accepted. Depending on the attacker-
controlled variable the release event is reached. However, this is an example of availability attack,
which is ignored by Definition 13.

Program [•]; while u > h do skip; low := 1 is rejected. Any attack leading to the low
assignment restricts the control to attacks such that u ≤ h. However, release control includes
attacks u > h, because the attacker learns information from divergence.

The definition of progress-insensitive robustness is similar to Definition 13, but uses progress-
insensitive variants of release events, control, and release control. As a result, program [•]; while u >
h do skip; low := 1 is accepted: attacker control is all attacks.

Definition 14 (Progress-insensitive robustness). Program c[~•] satisfies progress-insensitive robust-
ness if for all memories m, attacks ~a, and traces ~t~r, such that 〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r and ~r

contains a release event, i.e., k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP ·~rP), we have

R.→(c[~•],m,~a,~t) ⊆ R→(c[~•],m,~a,~t·~r)

5. Endorsement
This section extends the semantic policies for robustness in a way that allows endorsing attacker-
provided values.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 13

Syntax and semantics. We add endorsement to the language:

c[~•] ::= . . . | x := endorseη(e)

We assume that every endorsement in the program source has a unique endorsement label η. Se-
mantically, endorsements produce endorsement events, denoted byendorse(η, v), which record the
label of the endorsement statement η together with the value v that is endorsed.

〈e,m〉 ↓ v
〈x := endorseη(e),m〉−→endorse(η,v)〈stop,m[x 7→ v]〉

Whenever the endorsement label is unimportant, we omit it from the examples. Note that endorse(η, v)
events need not mention variable name x since that information is implied by the unique label η.

Consider example program [•]; low := endorseη1(u < h). This program does not satisfy
Definition 13. The reasoning for this is exactly the same as for program [•]; low := u < h from
Section 4.

Irrelevant attacks. Endorsement of certain values gives attacker some control over the knowledge.
The key technical element of this section is the notion of irrelevant attacks, which defines the set
of attacks that are endorsed, and that are therefore excluded when comparing attacker control with
release control. We define irrelevant attacks formally below, based on the trace that is produced by
a program.

Given a program c[•], starting memory m, and a trace ~t, irrelevant attacks, denoted here by
Φ(c[~•],m,~t), are the attacks that lead to the same sequence of endorsement events as in ~t, until they
necessarily disagree on one of the endorsements. Because the influence of these attacks is reflected
at endorsement events, we exclude them from consideration when comparing with attacker control.

We start by defining irrelevant traces. Given a trace ~t, irrelevant traces for ~t are all traces ~t′
that agree with ~t on some prefix of endorsement events until they necessarily disagree on some
endorsement. We define this set as follows.

Definition 15 (Irrelevant traces). Given a trace~t, where endorsements are marked as endorse(ηj , vj),
define a set of irrelevant traces based on the number of endorsements in ~t as φi(~t): φ0(~t) = ∅, and

φi(~t) = {~t′ | ~t′ = ~q ·endorse(ηi, v
′
i)·~q′} such that

~q is a prefix of ~t′ with i− 1 events all of which agree with endorse events in ~t, and

vi 6= v′i

Define φ(~t) ,
⋃
i φi(~t) as a set of irrelevant traces w.r.t. ~t.

With the definition of irrelevant traces at hand, we can define irrelevant attacks: irrelevant
attacks are attacks that lead to irrelevant traces.

Definition 16 (Irrelevant attacks). Given a program c[~•], initial memory m, and a trace ~t, such that
〈c[~•],m〉−→∗~t, define irrelevant attacks Φ(c[~•],m,~t) as

Φ(c[~•],m,~t) , {~a | 〈c[~a],m〉−→∗~t′ ∧ ~t′ ∈ φ(~t)}

14 ASLAN ASKAROV AND ANDREW C. MYERS

release events

attacks

Φ

(A) Irrelevant attacks

release events

attacks
R

R�

(B) Robustness w/o en-
dorsements (unsatisfied)

release events

attacks

Φ

R

R�

(C) Robustness
with endorsements
(satisfied)

FIGURE 7. Irrelevant attacks and robustness with endorsements

Security. The security conditions for robustness can now be adjusted to accommodate endorse-
ments that happen along traces. The idea is to exclude irrelevant attacks from the left-hand side
of Definitions 13 and 14. This security condition, which has both progress-sensitive and progress-
insensitive versions, expresses roughly the same idea as qualified robustness [16], but in a more
natural and direct way.

Definition 17 (Progress-sensitive robustness with endorsements). Program c[~•] satisfies progress-
sensitive robustness with endorsement if for all memories m, attacks ~a, and traces ~t~r, such that
〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r and ~r contains a release event, i.e., k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP·~rP),

we have
R.(c[~•],m,~a,~t) \ Φ(c[~•],m,~t·~r) ⊆ R(c[~•],m,~a,~t·~r)

We refer to the set R.(c[~•],m,~a,~t) \ Φ(c[~•],m,~t ·~r) as a set of relevant attacks. Figures 7a
to 7c visualize irrelevant attacks and the semantic condition of Definition 17. Figure 7a shows
the set of irrelevant attacks, depicted by the shaded gray area. This set increases at endorsement
events marked by stars. Figure 7b shows an example trace where robustness is not satisfied — the
gray area corresponding to release control R. exceeds the attacker control (depicted by the solid
line). Finally, in Figure 7c, we superimpose Figures 7a and 7b. This illustrates that when the set
of irrelevant attacks is excluded from the release control (the area under white dashed lines), the
program is accepted by robustness with endorsements.

Examples. Program [•]; low := endorseη1(u < h) is accepted by Definition 17. Consider initial
memorym(h) = 7, and an attack u := 1; this produces a trace [(u, 1)]endorse(η1, 1). The endorsed
assignment also produces a release event. We have that

• Release control R. is the set of all attacks that reach the low assignment.
• Irrelevant traces φ([(u, 1)]endorse(η1, 1)) is a set of traces that end in endorsement event
endorse(η1, v) such that v 6= 1. Thus, irrelevant attacks Φ([•]; low := endorseη1(u <
h),m, [(u, 1)]endorse(η1, 1)) must consist of attacks that reach the low assignment and set
u to values u ≥ 7.
• The left-hand side of Definition 17 is therefore the set of attacks that reach the endorsement

and set u to u < 7.
• As for the attacker control on the right-hand side, it consists of attacks that set u < 7.

Hence, the set inclusion of Definition 17 holds and the program is accepted.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 15

Program [•]; low := endorseη1(u); low ′ := u < h′′ is accepted. The endorsement in the first
assignment implies that all relevant attacks must agree on the value of u, and, consequently, they
agree on the value of u < h′′, which gets assigned to low ′. This also means that relevant attacks
belong to the attacker control (which contains all attacks that agree on u < h′′).

Program [•]; low := endorseη1(u < h); low ′ := u < h′′ is rejected. Take initial memory such
that m(h) 6= m(h′). The set of relevant attacks after the second assignment contains attacks that
agree on u < h (due to the endorsement), but not necessarily on u < h′′. The latter, however, is the
requirement for the attacks that belong to the attacker control.

Program [•]; if u > 0 then h ′ := endorse(u) else skip; low := h′ < h is rejected. Assume
initial memory where m(h) = m(h′) = 7. Consider attack a1 that sets u := 1 and consider the
trace ~t1 that it gives. This trace endorses u in the then branch, overwrites the value of h′ with 1,
and produces a release event (low , 1). Consider another attack a2 that sets u := 0, and consider the
corresponding trace ~t2. This trace contains release event (low , 0) without any endorsements. Now,
attacker control R(c[~•],m, a2,~t2) excludes a1, because of the disagreement at the release event. At
the same time, a1 is a relevant attack for a2, because no endorsements happen along ~t2.

Consider program c[~•], which contains no endorsements. In this case, for all possible traces ~t,
we have that φ(~t) = φ0(~t) = ∅. Therefore, by Definition 16 it must be that Φ(c[~•],m,~t) = ∅ for all
memoriesm and traces~t. This indicates that for programs without endorsements, progress-sensitive
robustness with endorsements (Definition 17) conservatively reduces to the earlier definition of
progress-sensitive robustness (Definition 13).

Progress-insensitive robustness with endorsement is defined similarly. The intuition for the
definition remains the same, while we use progress-insensitive variants of progress control and
control:

Definition 18 (Progress-insensitive robustness with endorsement). Program c[~•] satisfies progress-
insensitive robustness with endorsement if for all memories m, attacks ~a, and traces ~t·~r, such that
〈c[~a],m〉−→∗~t〈c′,m′〉−→

∗
~r, and ~r contains a release event, i.e., k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP ·

~rP), we have
R.→(c[~•],m,~a,~t) \ Φ(c[~•],m,~t·~r) ⊆ R→(c[~•],m,~a,~t·~r)

As a final note in this section, observe that because of the particular use of irrelevant attacks
in Definitions 17 and 18 it is sufficient for us to define irrelevant traces so that they only match
at the endorsement events. A slightly more generalized notion of irrelevance would require ~q in
Definition 15 to be similar to a prefix of ~t′.

6. Enforcement
We now explore how to enforce robustness using a security type system. While this section focuses
on progress-insensitive enforcement, it is possible to refine the type system to deal with progress
sensitivity (modulo availability attacks) [26, 19]. Figures 8 and 9 display typing rules for expres-
sions and commands. This type system is based on the one of [16] and is similar to many standard
security type systems.

Declassification. We extend the language with a language construct for declassification of expres-
sions declassify(e). Whereas in earlier examples, we considered an assignment l := h to be
secure if it did not violate robustness, we now require information flows from public to secret to be
mediated by declassification. We note that declassification has no additional semantics and, in the

16 ASLAN ASKAROV AND ANDREW C. MYERS

Γ ` n : `, ∅ Γ ` x : Γ(x), ∅
Γ ` e1 : `1, D1 Γ ` e2 : `2, D2

Γ ` e1 op e2 : `1 t `2, D1 ∪D2

(T-DECL)
Γ ` e : `,D

Γ ` declassify(e) : ` u (P,U), vars(e)

FIGURE 8. Type system: expressions

(T-SKIP)
Γ, pc ` skip

(T-SEQ)
Γ, pc ` c1 Γ, pc ` c2

Γ, pc ` c1; c2

(T-ASGMT)
Γ ` e : `,D ` t pc v Γ(x) ∀y ∈ D . Γ(y) v (S,T) D 6= ∅ =⇒ pc v (P,T)

Γ, pc ` x := e

(T-IF)
Γ ` e : `, ∅ Γ, pc t ` ` c1 Γ, pc t ` ` c2

Γ, pc ` if e then c1 else c2

(T-WHILE)
Γ ` e : `, ∅ Γ, pc t ` ` c

Γ, pc ` while e do c

(T-HOLE)
pc v (P,U)

Γ, pc ` •

(T-ENDORSE)
pc t Γ(x) v (S,T) pc v Γ(x) Γ ` e : `, ∅ ` u (S,T) v Γ(x)

Γ, pc ` x := endorse(e)

FIGURE 9. Type system: commands

context of our simple language, can be inferred automatically. This may be achieved by placing de-
classifications in public assignments that appear in trusted code, i.e., in non-• parts of the program.
Moreover, making declassification explicit has the following motivations:

(1) On the enforcement level, the type system conveniently ensures that a non-progress re-
lease event may happen only at declassification. All other assignments preserve progress-
insensitive knowledge.

(2) Much of the related work on language-based declassification policies uses similar type sys-
tems. Showing our security policies can be enforced using such systems makes the results
more general.

Typing of expressions. Type rules for expressions have form Γ ` e : `,D where ` is the level
of the expression, and D is a set of variables that may be declassified. The declassification is the
most interesting rule among expressions. It downgrades the confidentiality level of the expression
by returning ` u (P,U), and counts all variables in e as declassified.

Typing of commands. The typing judgments for commands have the form Γ, pc ` c. The rules are
standard for a security type system. We highlight typing of assignments, endorsement, and holes.

Assignments have two extra clauses for when the assigned expression contains a declassifi-
cation (D 6= ∅). The rule (T-ASGMT) requires all variables that can be declassified have high

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 17

Sequential composition 1

Sequential composition 2

Advancement Lemma

Control backbone Lemma

Proposition 1

FIGURE 10. High-level structure of proof of Proposition 1

integrity. The rule also bounds the pc-label by (P,T), which enforces that no declassification hap-
pens in untrusted or secret contexts. These requirements guarantee that the information released by
the declassification does not directly depend on the attacker-controlled variables.

The typing rule for endorsement (T-ENDORSE) requires that the pc-label is trusted and that
the result of the endorsement is stored in a trusted variable: pc tΓ(x) v (S,T). Note that requiring
a trusted pc-label is crucial, while the restriction that x is trusted could easily be lifted, since trusted
values may flow into untrusted variables. Because endorsed expressions preserve their confidential-
ity level, we also check that x has the right security level to store the result of the expression. This
is done by demanding that ` u (S,T) v Γ(x), where taking meet of ` and (S,T) boosts integrity,
but keeps the confidentiality level of `.

The rule for holes forbids placing attacker-provided code in high confidentiality contexts. For
simplicity, we disallow declassification in the guards of if and while.

6.1. Soundness
This section shows that the type system of Figures 8 and 9 is sound. We formulate top-level sound-
ness in Proposition 1. The proof of Proposition 1 appears in the end of the section.

Proposition 1. If Γ, pc ` c[~•] then for all attacks ~a, memories m, and traces ~t ·~r produced by
〈c[~a],m〉, where k→(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP ·~rP), we have that

R.→(c[~•],m,~a,~t) \ Φ(c[~•],m,~t·~r) ⊆ R→(c[~•],m,~a,~t·~r)

Auxiliary definitions. We introduce an auxiliary definition of progress-insensitive noninterference
along a part of a trace, abbreviated PINI, which we will use in the proof of Proposition 1. Figure 10
shows the high-level structure of the proof. We define declassification events to be low events
that involve declassifications. The central property of this proof — the control backbone lemma
(Lemma 6) — captures the behavior of similar attacks and traces that are generated by well-typed
commands. Together with the Advancement Lemma, it shows that declassification events soundly
approximate release events. The proof of Proposition 1 follows directly from the Control Backbone
and Advancement lemmas.

Definition 19 (Progress-insensitive noninterference along a part of a trace). Given a program c,
memorym, and two traces ~t and ~t+ such that ~t+ is an extension of ~t, we say that c satisfies progress-
insensitive noninterference along the part of the trace from ~t to ~t+, denoted by PINI(c,m,~t,~t+)

whenever for the low events in the corresponding traces ~̀n , ~tP and ~̀N , ~t+P , n ≤ N , it holds that

∀i . n < i < N . k→(c,mP, ~̀i) ⊆ k(c,mP, ~̀i+1)

Lemma 1 (Noninterference for no declassifications). Given a program c without declassifications
such that Γ, pc ` c then for all memories m and possible low events ~̀·`′ such that

〈c,m〉−→∗~̀〈c′,m′〉−→∗`′〈c′′,m′′〉

18 ASLAN ASKAROV AND ANDREW C. MYERS

it holds that k→(c,m, ~̀) ⊆ k(c,m, ~̀·`′).

Proof. By induction on c (cf. [1]). 2

Lemma 2 (Noninterference for the tail of sequential composition). Assume a program c such that
for all memories m and low events `, such that 〈c,m〉−→∗`〈c′,m′〉, it holds that k→(c,mP, ε) ⊆
k(c,mP, `). Then for all programs c0, initial memories i, and low events ~l0, such that

〈c0; c, i〉−→∗~̀
0
〈c, i′〉−→∗`′

we have k→(c0; c, iP, ~̀0) ⊆ k(c0; c, iP, ~̀0 ·`′).

Proof. Assume the set inclusion from the statement of the lemma does not hold. By Definition 2,
there must exist an initial memory m, such that m =P i and 〈c0; c,m〉−→∗~̀

0
〈c,m′〉−→∗`′′ , but

`′ 6= `′′. Because m =P i and both traces produce ~̀0, it must also be that m′ =P i′. But this
also implies that m′ 6∈ k(c, i′P, `

′), that is, k→(c, i′P, ε) 6⊆ k(c, i′P, `
′), which contradicts the main

assumption about c. 2

The following two helper lemmas correspond to the sequential composition sub-cases of the
Advancement Lemma. Lemma 3 captures the special case when the first command in the sequential
composition c1[•]; c2[•] does not produce a declassification event, while Lemma 4 considers the
general case when a declassification event may be produced by either of c1[•] or c2[•].

Lemma 3 (Sequential composition 1). Given
• program ~c0[~•] such that Γ, pc ` c0[~•],
• initial memory m0,
• two initial attacks ~a0,~b0,
• two intermediate configurations 〈c1[~a1]; c2[~a2],m〉 and 〈c1[~b1]; c2[~b2], s〉 such that
• 〈c0[~a0],m0〉−→∗~t′〈c1[~a1]; c2[~a2],m〉−→

∗
~tα
〈c2[~a2],m′〉−→∗~tβ·r

• 〈c0[~b0],m0〉−→∗~q′〈c1[~b1]; c2[~b2], s〉−→
∗
~q′′·r′

• PINI(c0[~a0],m0,~t
′, ~t′ ·~tα ·~tβ)

• PINI(c0[~b0],m0, ~q′, ~q′ · ~q′′)
• r and r′ are declassification events
• ~b0 6∈ Φ(c0[~•],m0, ~t′ ·~tα ·~tβ ·r)
• ~t′? = ~q′?
• m =T s

then ~q′′ = ~qα ·~qβ such that
• 〈c1[~a1]; c2[~a2], s〉−→∗~qα〈c2[~a2], s′〉−→∗~qβ·r
• ~tα? = ~qα?
• m′ =T s

′

Proof. By induction on the structure of c1[~•]. Case skip is immediate. Consider the other cases.
• case [~•]

In this case ~a1 = a1 and~b1 = b1. By assumption, a1 and b1 are fair attacks, which means
that ~tα has no release events and no assignments to trusted variables. Similarly, because no
low assignments can be produced when running ~b1, then by Definition 6 there must be s′

and ~qα that would satisfy the demand of the lemma.
• case x := e

We consider confidentiality and integrity properties separately.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 19

Confidentiality: We show that even if a low event is possible, it is not a release event.
We have two cases, based on the confidentiality level of x.

(1) Γ(x) = (P, _)
A low event is generated by the low assignment. By Lemma 1 and Lemma 2 the
assignment must not be a release event.

(2) Γ(x) = (S, _)
In this case no low events are generated.

Integrity: Next, we show that the resulting memories agree on trusted values. The two
cases are

(1) Γ(x) = (_,T) In this case it must be that Γ(e) = (_,T) and, hence, m(e) =
s(e). Therefore m′ =T s

′.
(2) Γ(x) = (_,U) Assignment to x does not change how memories agree on trusted

values.
• case x := endorseη(e)

We consider the confidentiality and integrity properties of this command separately.
Confidentiality: Similar to the case for assignment.
Integrity: We consider two cases.

(1) Γ(x) = (_,T)

In this case, the trace produces an event endorse(η, v). We note that ~b0 6∈
Φ(c0[~•],m0, ~t′·~tα·~tβ·r). In particular, we have that ~q′·~q′′·r′ 6∈ φ(~t′·~tα·~tβ·r). If we
assume that the current command is the i-th endorsement in the trace, we have
that ~q′· ~q′′·r′ 6∈ φi(~t′·~tα·~tβ ·r). But we also know that ~t′? =T ~q′?. Because, by the
rule (T-ENDORSE), the result of endorsement is assigned to trusted variables,
this implies that both ~q′ and ~t′ must agree on the endorsed values. Therefore, the
only possibility with which ~q′·~q′′·r′ 6∈ φi(~t) is that ~q′′ generates endorse(η, v) as
well. This implies that value v is assigned to x in both cases, which guarantees
that m′ =T s

′.
(2) Γ(x) = (_,U) Not applicable by (T-ENDORSE).

• case cα; cβ
By two applications of induction hypothesis: one to cα; (cβ; c2[~•]) and the other one to

cβ; c2[~•].
• case if e then ctrue else cfalse

We have the following cases based on the type of expression e.
(1) Γ(e) = (_,T)

In this case both branches are taking the same branch and we are done by induction
hypothesis.

(2) Γ(e) = (_,U)
In this case neither of ctrue or cfalse contain declassifications or high integrity assign-
ments. This guarantees that m′ =T s

′.
• case while e do cloop

Similar to sequential composition and conditionals.
2

Lemma 4 (Sequential composition 2). Given
• program c0[~•] such that Γ, pc ` c0[~•]
• initial memory m0

• two initial attacks ~a0,~b0

20 ASLAN ASKAROV AND ANDREW C. MYERS

• two intermediate configurations 〈c1[~a1]; c2[~a2],m〉 and 〈c1[~b1]; c2[~b2], s〉 such that
• 〈c0[~a0],m0〉−→∗~t′〈c1[~a1]; c2[~a2],m〉−→

∗
~t′′
〈c′1[~a′1]; c2[~a2],m′〉−→(x,v)〈c′′1[~a′′1]; c2[~a2],m

′′〉
• 〈c0[~b0],m0〉−→∗~q′〈c1[~b1]; c2[~b2], s〉−→

∗
~q′′
〈d′, s′〉−→(y,u)〈d′′, s′′〉

• PINI(c0[~a0],m0, ~t′, ~t′ ·~t′′)
• PINI(c0[~b0],m0, ~q′, ~q′ · ~q′′)
• (x, v) and (y, u) are declassification events
• ~b0 6∈ Φ(c0[~•],m0, ~t′ ·~t′′ ·(x, v))

• ~t′? = ~q′?
• m =T s

then
• ~a′1 = ~a′′1
• there is b′1 such that
• d′ = c′1[

~b′1]; c2[
~b2]

• d′′ = c′′1[~b′1]; c2[
~b2]

• ~t′′? = ~q′′?
• m′ =T s

′

• m′′ =T s
′′

• (x, v) = (y, u).

Proof. By induction on the structure of c1[~•]. In the cases of [~•], skip, and x := endorse(e) no
declassification events may be produced, so these cases are impossible.

• x := e. When D = ∅, no declassification events may be produced. When D 6= ∅, a
declassification event is produced by both traces. Also, ~t′′ = ~q′′ = ε, and m′ = m and
s′ = s. Because m =T s and Γ(e) = (_,T) we have that both traces produces the same
declassification event (x, v), and therefore, m′′ =T s

′′.
• case cα[aα]; cβ[aβ]

We have two cases depending on whether cα[aα] generates low events:
(1) 〈cα[aα]; (cβ[aβ]; c2[a2]),m〉−→∗`1···`N 〈cβ[aβ]; c2[a2],m

′〉 In this case by Lemma 3 it
must be that 〈cα[bα]; (cβ[bβ]; c2[b2]),m〉−→∗`1···`′N 〈cβ[bβ]; c2[b2], s

′〉 such that m′ =T
s′. Then we can apply the induction hypothesis to cβ[•].

(2) In this case (x, v) is produced by cα[aα] and we are done by application of induction
hypothesis to cα[•].

• case if e then ctrue else cfalse
We have two cases:

(1) Γ(e) = (_,T)
In this case both branches take the same command, and we are done by the induction
hypothesis.

(2) Γ(e) = (_,U).
Impossible, because declassification events are not allowed in untrusted integrity con-
texts.

• case while e do cloop

Similar to sequential composition and conditionals.
2

Lemma 5 (Advancement). Given

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 21

• program c0[~•] such that Γ, pc ` c0[~•]
• initial memory m0

• two initial attacks ~a0,~b0
• two intermediate configurations 〈c[~a],m〉 and 〈c[~b], s〉 such that
• 〈c0[~a0],m0〉−→∗~t′〈c[~a],m〉−→∗ ~t′′〈c

′[~a′],m′〉−→(x,v)〈c′′[~a′′],m′′〉
• 〈c0[~b0],m0〉−→∗~q′〈c[~b], s〉−→

∗
~q′′
〈d′, s′〉−→(y,u)〈d′′, s′′〉

• PINI(c0[~a0],m0, ~t′, ~t′ ·~t′′)
• PINI(c0[~b0],m0, ~q′, ~q′ · ~q′′)
• (x, v) and (y, u) are declassification events
• ~b 6∈ Φ(c0[~•],m0, ~t′ ·~t′′ ·(x, v))

• ~t′? = ~q′?
• m =T s

then
• ~a′ = ~a′′

• there is b′ such that
• d′ = c′[~b′]

• d′′ = c′′[~b′]

• ~t′′? = ~q′′?
• m′ =T s

′

• m′′ =T s
′′

• (x, v) = (y, u).

Proof. By induction on c[~•]. In the cases of [~•], skip, and x := endorse(e), no declassification
events may be produced, so these cases are impossible.

• x := e. In case D = ∅, no declassification events may be produced. When D 6= ∅, a
declassification event is produced by both traces. Also, ~t′′ = ~q′′ = ε, and m′ = m and
s′ = s. Because m =T s and Γ(e) = (_,T) we have that both traces produces the same
declassification event (x, v), and therefore, m′′ =T s

′′.
• case cα; cβ

By Lemma 4.
• case if e then ctrue else cfalse

We have two cases:
(1) Γ(e) = (_,T)

In this case both branches take the same command and we are done by induction hy-
pothesis.

(2) Γ(e) = (_,U).
Impossible, because declassification events are not allowed in untrusted integrity con-
texts.

• case while e do cloop
Similar to sequential composition and conditionals.

2

22 ASLAN ASKAROV AND ANDREW C. MYERS

Lemma 6 (Control Backbone). Given Γ, pc ` c[•], memory m, an initial attack ~a and a trace ~t,
such that

〈c[~a],m〉−→∗~t1〈c1[~a1],m1〉−→r1〈c′1[~a′1],m′1〉−→∗~t2···ri−1

〈c′i−1[~a′i−1],m′i−1〉−→∗~ti 〈ci[~ai],mi〉−→ri〈c′i[~a′i],m′i〉 −→
∗ . . .

where ri are declassification events, then for all~b, ~q such that (~a,~t) ∼c[~•],m→ (~b, ~q) and~b 6∈ Φ(c[~•],m,~t),
it holds that the respective configurations (highlighted in boxes here) match at the declassification
events, that is

〈c[~b],m〉−→∗~q1〈c1[~b1], s1〉−→r1〈c′1[~b′1], s′1〉−→∗~q2···ri−1

〈c′i−1[~b′i−1], s′i−1〉−→∗~qi 〈ci[~bi], si〉−→ri〈c′i[~b′i], s′i〉 −→
∗ . . .

where i ranges over the number of declassification events in ~t, and moreover
• mi =T si and m′i =T s

′
i

• ~qi? = ~ti?

Proof. By induction on the number of declassification events. The base case, where n = 0, is
immediate. For the inductive case, assume the proposition holds for the first n declassification
events in ~t, and apply Lemma 5.

2

We conclude this section with the proof of Proposition 1.

Proof of Proposition 1 Consider~b ∈ R.→(c[~•],m,~a,~t) \Φ(c[~•],m,~t·~r). We want to show that
~b ∈ R→(c[~•],m,~a,~t ·~r). Because ~b ∈ R.→(c[~•],m,~a,~t), we have that ~b ∈ {~b | ∃~q . (~a,~t) ∼c[~•],m→
(~b, ~q) ∧ (∃~r′ . k→(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ·~r′P) ∨ 〈c[~b],m〉 ⇓)}. We consider the two cases

(1) ~b ∈ {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q) ∧ ∃~r′ . k→(c[~b],mP, ~qP) ⊃ k(c[~b],mP, ~qP ·~r′P)}

By definition of Φ(c[~•],m,~t·~r), we have that~b 6∈ Φ(c[~•],m,~t·~r) =⇒ ~b 6∈ Φ(c[~•],m,~t).
By the Control Backbone Lemma 6, we have that two traces agree on the declassification
points up to the length of ~t, and in particular there are ~t0,~t1, ~q0, ~q1 such that ~t = ~t0·~t1·~r and
~q = ~q0 ·~q1 and that there are no release events along ~t1 and ~q1, for which it holds that

〈c[~a],m〉−→∗~t0〈c
′[~a′],m′〉−→∗~t1·~r

and

〈c[~b],m〉−→∗~q0〈c
′[~b′], s′〉−→∗

~q1·~r′

where ~t? = ~q? and m′ =T s
′. By Advancement Lemma 5, we obtain that both traces must

agree on ~r and ~r′. This is sufficient to extend the original partitioning of (~a,~t) and (~b, ~q) to
(~a,~t·~r) and (~b, ~q0 ·~q1 ·~r′) such that (~a,~t·~r) ∼c[~•],m→ (~b, ~q0 ·~q1 ·~r′).

(2) ~b ∈ {~b | ∃~q . (~a,~t) ∼c[~•],m→ (~b, ~q) ∧ 〈c[~b],m〉 ⇓}
This case is impossible. By the Control Backbone Lemma 6 there must be two respective

configurations 〈c′[~a′],m′〉 and 〈c′[~b′], s′〉 where m′ =T s′, such that 〈c′[~a′],m′〉 leads to a
release event, but 〈c′[~b′], s′〉 terminates without release events. By analysis of c′, similar to
the Advancement Lemma, we conclude that none of the cases is possible. 2

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 23

7. Checked endorsement
Realistic applications endorse attacker-provided data based on certain conditions. For instance, an
SQL string that depends on user-provided input is executed if it passes sanitization, a new password
is accepted if the user can provide an old one, and a secret key is accepted if nonces match. Because
this is a recurring pattern in security-critical applications, we argue for language support in the form
of checked endorsements.

This section extends the language with checked endorsements and derives both security condi-
tions and a typing rule for them. Moreover, we show checked endorsements can be decomposed into
a sequence of direct endorsements, and prove that for well-typed programs, the semantic conditions
for robustness are the same with checked endorsements and with unchecked endorsements.

Syntax and semantics. In the scope of this section, we assume checked endorsements are the only
endorsement mechanism in the language. We introduce a syntax for checked endorsements:

c[~•] ::= . . . | endorseη(x) if e then c else c

The semantics of this command is that a variable x is endorsed if the expression e evaluates to
true. If the check succeeds, the then branch is taken, and x is assumed to have high integrity
there. If the check fails, the else branch is taken. As with direct endorsements, we assume checked
endorsements in program text have unique labels η. These labels may be omitted from the examples,
but they are explicit in the semantics.

Endorsement events. Checked endorsement events checked(η, v, b) record the unique label of the
endorsement command η, the value of variable that can potentially be endorsed v, and a result of
the check b, which can be either 0 or 1.

m(e) ↓ v v 6= 0

〈endorseη(x) if e then c1 else c2,m〉
checked(η,m(x),1)−→ 〈c1,m〉

m(e) ↓ v v = 0

〈endorseη(x) if e then c1 else c2,m〉
checked(η,m(x),0)−→ 〈c2,m〉

Irrelevant attacks. For checked endorsement we define a suitable notion of irrelevant attacks. The
reasoning behind this is the following.

(1) Both ~t and ~t′ reach the same endorsement statement: ηi = η′i.
(2) At least one of them results in the positive endorsement: bi + b′i ≥ 1. This ensures that if

both traces do not take the branch then none of the attacks are ignored.
(3) The endorsed values are different: vi 6= v′i. Otherwise, there should be no further difference

in what the attacker can influence along the trace.
The following definitions formalize the above construction.

Definition 20 (Irrelevant traces). Given a trace~t, where endorsements are labeled as checked(ηj , vj , bj),
define a set of irrelevant traces based on the number of checked endorsements in ~t as ψi(~t). Then

24 ASLAN ASKAROV AND ANDREW C. MYERS

ψ0(~t) = ∅, and

ψi(~t) = {~t′ | ~t′ = ~q ·checked(ηi, v
′
i, b
′
i)·~q′} such that

~q is a prefix of ~t′ with i− 1 checked events, all of which agree with checked events in ~t,

(bi + b′i ≥ 1) ∧ (vi 6= v′i), and
~q′ contains no checked events

Define ψ(~t) ,
⋃
i ψi(~t) as a set of irrelevant traces w.r.t. ~t.

Definition 21 (Irrelevant attacks). Ψ(c[~•],m,~t) , {~a| 〈c[~a],m〉−→∗~t′ ∧ ~t′ ∈ ψ(~t)}

Using this definition, we can define security conditions for checked robustness.

Definition 22 (Progress-sensitive robustness with checked endorsement). Program c[~•] satisfies
progress-sensitive robustness with checked endorsement if for all memories m and attacks ~a, such
that 〈c[~a],m〉−→∗~a〈c′,m′〉−→∗~r, and ~r contains a release event, i.e., k(c[~a],mP,~tP) ⊃ k(c[~a],mP,~tP·
~rP), we have

R.(c[~•],m,~a,~t) \Ψ(c[~•],m,~t·~r) ⊆ R(c[~•],m,~a,~t·~r)

The progress-insensitive version is defined similarly, using progress-insensitive definition for
release events and progress-insensitive versions of control and release control.

Example. In program [•]; endorseη1(u) if u = u′ then low := u < h else skip, the attacker
can modify u and u′. This program is insecure because the unendorsed, attacker-controlled variable
u′ influences the decision to declassify. To see that Definition 22 rejects this program, consider run-
ning it in memory with m(h) = 7, and two attacks: a1, where attacker sets u := 5;u′ := 0, and a2,
where attacker sets u := 5;u′ = 5. Denote the corresponding traces up to endorsement by ~t1 and ~t2.
We have~t1 = [(u, 5)·(u′, 0)]·checked(η1, 5, 0) and~t2 = [(u, 5)·(u′, 5)]·checked(η1, 5, 1). Because en-
dorsement in the second trace succeeds, this trace also continues with a low event (low , 1). Follow-
ing Definition 20 we have that t1 6∈ ψ(~t2·(low , 1)), implying a1 6∈ Ψ(c[~•],m,~t2·(low , 1)). Therefore,
a1 ∈ R.(c[~•],m,~a2,~t2)\Ψ(c[~•],m,~t2·(low , 1)). On the other hand, a1 6∈ R(c[~•],m,~a2,~t2·(low , 1))
because a1 can produce no low events corresponding to (low , 1).

Endorsing multiple variables. The syntax for checked endorsements can be extended to multiple
variables with the following syntactic sugar, where ηi is an endorsement label corresponding to
variable xi:

endorse(x1, . . . xn) if e then c1 else c2 =⇒ endorseη1(x1) if e then

endorseη2(x2) if true then . . . c1 else skip . . . else c2

Note that in this encoding the condition is checked as early as possible; an alternative encoding
here would check the condition in the end. While such encoding would have an advantage of type
checking immediately, we believe that checking the condition as early as possible avoids spurious
(albeit harmless in this simple context) endorsements of all but the last variable, and is therefore
more faithful semantically.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 25

Typing checked endorsements. To enforce programs with checked endorsements, we extend the
type system with the following general rule:

(T-CHECKED)
Γ′ , Γ[xi 7→ Γ(xi) u (S,T)] Γ′ ` e : `′, D′ pc′ , pc t `′

pc′ v (S,T) Γ′, pc′ ` c1 Γ, pc′ ` c2
Γ, pc ` endorse(x1, . . . , xn) if e then c1 else c2

The expression e is type-checked in an environment Γ′ in which endorsed variables x1, . . . xn have
trusted integrity; its label `′ is joined to form auxiliary pc-label pc′. The level of pc′ must be trusted,
ensuring that endorsements happen in a trusted context, and that no declassification in e depends
on untrusted variables other than the xi (this effectively subsumes the need to check individual
variables in D′). Each of the branches is type-checked with the program label set to pc′; however,
for c1 we use the auxiliary typing environment Γ′, since the xi are trusted there.

Program [•]; endorse(u) if u = u′ then low := declassify(u < h) else skip is re-
jected by this type system. Because variable u′ is not endorsed, the auxiliary pc-label has untrusted
integrity.

7.1. Relation to direct endorsements
Finally, for well-typed programs we can safely translate checked endorsements to direct endorse-
ments using a translation in which a checked endorsement of n variables is translated to n+1 direct
endorsements. First, we unconditionally endorse the result of the check. The rest of the endorse-
ments happen in the then branch, before translation of c1. We save the results of the endorsements
in temporary variables t1 . . . tn and replace all occurrences of x1 . . . xn within c1 with the tempo-
rary ones (we assume that each ti has the same confidentiality level as the corresponding original
xi, and t0 has the confidentiality level of the expression e). All other commands are translated to
themselves.

Definition 23 (Labeled translation from checked endorsements to direct endorsements). Given a
program c[~•] that only uses checked endorsements, we define its labeled translation to direct en-
dorsements Jc[~•]K inductively:

• Jendorseη(x1, . . . xn) if e then c1 else c2K =⇒ t0 := endorseη0(e); if t0
then t1 := endorseη1(x1); . . . tn := endorseηn(xn); Jc1[ti/xi]K else Jc2K
• Jc1; c2K =⇒ Jc1K; Jc2K
• Jif e then c1 else c2K =⇒ if e then Jc1K else Jc2K
• Jwhile e do cK =⇒ while e do JcK
• JcK =⇒ c, for other commands c.

Adequacy of translation for checked endorsements for well-typed programs. Next we show ade-
quacy of the labeled translation of Definition 23 for well-typed programs. Note that for non-typed
programs this adequacy does not hold, as shown by an example in the end of the section.

Without loss of generality, we assume checked endorsements have only one variable (n = 1 in
the translation of checked endorsement in Definition 23). We adopt an indexing convention where
checked endorsement with the label ηi, corresponds to two direct endorsements with the labels η2i−1
and η2i. The following lemma establishes a connection between irrelevant attacks of the source and
translated runs.

26 ASLAN ASKAROV AND ANDREW C. MYERS

Lemma 7 (Synchronized endorsements). Given a program c[~•] that only uses checked endorse-
ments, such that Γ, pc ` c[~•], memory m, and attack ~a, such that

〈c[~a],m〉−→∗~t and 〈Jc[~a]K,m〉−→∗
~̂t

where
• ~t = ~t′ ·checked(ηi, vi, bi) and

• ~̂t = ~̂t′ ·endorse(η2i−1, 0) or ~̂t = ~̂t′ ·endorse(η2i−1, 1)·endorse(η2i, v)
• k is a number of checked endorse events in ~t and

we have that
• R(c[~•],m,~a,~t) = R(Jc[~•]K,m,~a, ~̂t).
• R→(c[~•],m,~a,~t) = R→(Jc[~•]K,m,~a, ~̂t).
• Φ(Jc[~•]K,m, ~̂t) = Ψ(c[~•],m,~t)

Proof. The first two items follow from the definition of the translation, because the translation does
not generate new release events.

To prove the second item, we consider partitions of irrelevant traces generated by every k-
th checked endorsement and the direct endorsement(s) that correspond to it. We proceed by in-
duction on k. For the base case, k = 0, i.e., neither ~t nor ~̂t contain endorsements, it holds that
Φ(Jc[~•]K,m, ~̂t) = Ψ(c[~•],m,~t) = ∅. For the inductive case, define a pair of auxiliary sets

Fk , Φ(Jc[~•]K,m, ~̂t) \ Φ(Jc[~•]K,m, ~̂t′)

Pk , Ψ(c[~•],m,~t) \Ψ(c[~•],m, ~t′)

By the induction hypothesis, Φ(c[~•],m, ~̂t′) = Ψ(c[~•],m, ~t′). By Definitions 16 and 21, we know

that Φ(Jc[~•]K,m, ~̂t) ⊇ Φ(Jc[~•]K,m, ~̂t′) and Ψ(c[~•],m,~t) ⊇ Ψ(c[~•],m, ~t′). Therefore, in order to
prove that Φ(Jc[~•]K,m, ~̂t) = Ψ(c[~•],m,~t) it is sufficient to show that Fk = Pk. We consider each
direction of equivalence separately.

• Fk ⊇ Pk. Take an attack~b ∈ Pk. That is 〈c[~b],m〉 produces a trace ~q such that ~q agrees on
all checked endorsements with ~t except the last one. There are three possible ways in which
these endorsements may disagree:
(1) Trace ~t contains checked(ηk, vk, 1) and ~q contains checked(ηk, v

′
k, 1) such that vk 6=

v′k. By the rules for the translation, it must be that the trace ~̂t, which is produced by con-
figuration 〈Jc[~a]K,m〉, has two corresponding endorsement events endorse(η2k−1, 1)

and endorse(η2k, vk). Similarly, the trace ~̂q, produced by 〈Jc[~b]K,m〉, has two cor-
responding endorsement events endorse(η2k−1, 1) and endorse(η2k, v

′
k). Because

v′k 6= vk we have that ~̂q ∈ φ(~̂t).
(2) Trace ~t contains checked endorsement event checked(ηk, vk, 1), while trace ~q contains

event checked(ηk, v
′
k, 0). In this case, the trace ~̂t obtained from running 〈Jc[~a]K,m〉

must contain two endorsement events endorse(η2k−1, 1) and endorse(η2k, vk), while
the trace ~̂q corresponding to 〈Jc[~b]K,m〉 contains one event endorse(η2k−1, 0). There-
fore, ~̂q ∈ φ(~̂t).

(3) Trace ~t contains checked endorsement event checked(ηk, vk, 0), while trace ~q contains
event checked(ηk, v

′
k, 1). This is similar to the previous case.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 27

From ~̂q ∈ φ(~̂t) it follows that~b ∈ Fk.
• Fk ⊆ Pk. Take an attack ~b ∈ Fk. There must be a trace ~̂q, produced by 〈Jc[~b]K,m〉, such

that ~̂q ∈ φ(~̂t). There are two ways this can happen:
(1) ~̂q and ~̂t disagree at the translated endorsement event that has label η2k−1. More pre-

cisely, one must have form endorse(η2k−1, 1) and the other, endorse(η2k−1, 0). In
the original run, this corresponds to two traces ~t and ~q such that ~t contains the event
checked(ηk, bk, vk) and ~q contains the event checked(ηk, b

′
k, v
′
k). We know that bk = 1

and b′k = 0, and hence bk + b′k ≤ 1. According to Definition 20, we need to show that
v′k 6= vk. Assume this is not the case, and that v′k = vk. Then by rule (T-CHECKED),
we have bk = b′k, which contradicts the earlier conclusion. Hence ~q ∈ ψ(~t).

(2) Alternatively, ~̂q and ~̂t disagree at the endorsement event that has label η2k. This also
means that they agree on the earlier endorsement, i.e., for the corresponding trace with
checked endorsement, we can show that bk = b′k = 1, and vk 6= v′k. Therefore,
~q ∈ ψ(~t).

From ~q ∈ ψ(~t) it follows that~b ∈ Pk.
Using Lemma 7 we can show the following Proposition, which relates the security of the source

and translated programs.

Proposition 2 (Relation of checked and direct endorsements). Given a program c[~•] that only uses
checked endorsements such that Γ, pc ` c[~•], then c[~•] satisfies progress-insensitive robustness for
checked endorsements if and only Jc[~•]K satisfies progress-insensitive robustness for direct endorse-
ments.

Proof. Note that our translation preserves typing: when Γ, pc ` c[~•], then Γ, pc ` Jc[~•]K. There-
fore, by Proposition 1 the translated program satisfies progress-insensitive robustness with endorse-
ments. To show that the source program satisfies the progress-insensitive robustness with checked
endorsements, we use Lemma 7 and note that the corresponding sets of irrelevant attacks and con-
trol between any two runs of the programs must be in sync. 2

Notes on the adequacy of the translation. We observe two facts about the adequacy of this trans-
lation. First, for non-typed programs, the relation does not hold. For instance, a program like

[•]; endorse(u) if u = u′ then low := declassify(u < h) else skip

does not satisfy Definition 22. However, translation of this program satisfies Definition 17.
Second, observe that omitting endorsement of the expression would lead to occlusion. Consider

an alternative translation that endorses only the variables x1, . . . xn but not the result of the whole
expression. Using such a translation, a program

if u · 0 > 0 then skip else skip; trusted := x

is translated to

temp := x; if t · 0 > 0 then skip else skip; trusted := x

However, while the first program does not satisfy Definition 22, the second program is accepted by
Definition 17.

28 ASLAN ASKAROV AND ANDREW C. MYERS

8. Attacker impact
In prior work, robustness controls the attacker’s ability to cause information release. In the presence
of endorsement, the attacker’s ability to influence trusted locations also becomes an important se-
curity issue. To capture this influence, we introduce an integrity dual to attacker knowledge, called
attacker impact. Similarly to low events, we define trusted events as assignments to trusted variables
and termination.

Definition 24 (Attacker impact). Given a program c[~•], memory m, and trusted events ~t?, define
p(c[~•],m,~t?) to be a set of attacks ~a that match trusted events ~t?:

p(c[~•],m,~t?) , {~a | 〈c[~a],m〉−→∗~t′ ∧ ~t? = ~t′T}

Attacker impact is defined with respect to a given sequence of trusted events ~t?, starting in
memorym, and program c[~•]. The impact is the set of all attacks that agree with ~t? in their footprint
on trusted variables.

Intuitively, a smaller set for attacker impact means that the attacker has greater power to influ-
ence trusted events. Similarly to progress knowledge, we define progress impact, characterizing
which attacks lead to one more trusted event. This then allows us to define robustness conditions
for integrity, which have not previously been identified.

Definition 25 (Progress impact). Given a program c[~•], memory m, and sequence of trusted events
~t?, define progress impact p→(c[~•],m,~t?) as

p→(c[~•],m,~t?) , {~a | 〈c[~a],m〉−→∗~t′〈c
′,m′〉 ∧ ~t? = ~t′T ∧ 〈c′,m′〉−→∗t′′?}

The intuition for the baseline robustness for integrity is that attacker should not influence trusted
data. This is similar to noninterference for integrity (modulo availability attacks, which have not
been explored in this context before). However unlike earlier work, we can easily extend the notion
of integrity robustness to endorsements and checked endorsements.

Definition 26 (Progress-insensitive integrity robustness with endorsements). A program c[~•] satis-
fies progress-insensitive robustness for integrity if for all memories m, and for all traces ~t·t? where
t? is a trusted event, we have

p→(c[~•],m,~tT) \ Φ(c[~•],m,~t·t?) ⊆ p(c[~•],m,~tT ·t?)

Irrelevant attacks are defined precisely as in Section 5. We omit the corresponding definitions
for programs without endorsements and with checked endorsements.

The type system of Section 6 also enforces integrity robustness with endorsements, reject-
ing insecure programs such as t := u and if (u1) then t := endorse(u2), but accepting t :=
endorse(u). Moreover, a connection between checked and direct endorsements, analogous to
Proposition 2, holds for integrity robustness too.

9. Examples

Password update. Figure 11 shows code for updating a password. The attacker controls variables
guess of level (P,U) and new_password of level (S,U). The variable password has level (S,T)
and variables nfailed and ok have level (P,T). The declassification on line 3 uses the untrusted
variable guess. This variable, however, is listed in the endorse clause on line 2; therefore, the
declassification is accepted. The initially untrusted variable new_password has to be endorsed to

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 29

1 [•]
2 endorse(guess, new_password)

3 if (declassify(guess==password))

4 then

5 password = new_password;

6 nfailed = 0;

7 ok = true;

8 else

9 nfailed = nfailed + 1;

10 ok = false;

FIGURE 11. Password update

1 [•]
2 endorse(req_time)

3 if (req_time <= now)

4 then

5 if (req_time >= embargo_time)

6 then return declassify(new_data)

7 else return old_data

8 else

9 return old_data

FIGURE 12. Accessing embar-
goed information

update the password on line 5. The example also shows how other trusted variables—nfailed and
ok—can be updated in the then and else branches.

Data sanitization. Figure 12 shows an annotated version of the code from the introduction, in
which some information (new_data) is not allowed to be released until time embargo_time. The
attacker-controlled variable is req_time of level (P,U), and new_data has level (S,T). The
checked endorse ensures that the attacker cannot violate the integrity of the test req_time >=
embargo_time. (Variable now is high-integrity and contains the current time). Without the checked
endorse, the release of new_data would not be permitted either semantically or by the type system.

10. Related work
Prior robustness definitions [16, 10], based on equivalence of low traces, do not differentiate pro-
grams such as [•]; low := u < h; low ′ := h and [•]; low ′ := h; low := u < h; Per dimensions
of information release [24], the new security conditions cover not only the “who” dimension, but
are also sensitive to “where” information release happens. Also, the security condition of robust-
ness with endorsement does not suffer from the occlusion problems of qualified robustness. Balliu
and Mastroeni [6] derive sufficient conditions for robustness using weakest precondition semantics.
These conditions are not precise enough to distinguish the examples above, and, moreover, do not
support endorsement.

Prior work on robustness semantics defines termination-insensitive security conditions [16, 6].
Because the new framework is powerful enough to capture the security of programs with interme-
diate observable events, it can describe the robustness of nonterminating programs. Prior work on
qualified robustness [16] uses a non-standard scrambling semantics in which qualified robustness
unfortunately becomes a possibilistic condition, leading to anomalies such as reachability of dead
code. The new framework avoids such artifacts because it uses a standard, deterministic semantics.

Checked endorsement was introduced informally in the Swift web application framework [9] as
a convenient way to implement complex security policies. The current paper is the first to formalize
and to study the properties of checked endorsement.

Our semantic framework is based on the definition of attacker knowledge, developed in prior
work introducing gradual release [1]. Attacker knowledge is used for expressing confidential-
ity policies in recent work [7, 3, 2, 8]. However, none of this work considers integrity; applying
attacker-centric reasoning to integrity policies is novel.

30 ASLAN ASKAROV AND ANDREW C. MYERS

11. Conclusion
We have introduced a new knowledge-based framework for semantic security conditions for infor-
mation security with declassification and endorsement. A key technical innovation is characterizing
the impact and control of the attacker over information in terms of sets of similar attacks. Using
this framework, we can express semantic conditions that more precisely characterize the security
offered by a security type system, and derive a satisfactory account of new language features such
as checked endorsement.

References
[1] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key release policies. In

Proc. IEEE Symp. on Security and Privacy, pages 207–221, May 2007.
[2] A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic languages. In Proc.

IEEE Computer Security Foundations Symposium, July 2009.
[3] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks more than just a bit.

In ESORICS, pages 333–348, October 2008.
[4] A. Askarov and A. C. Myers. A semantic framework for declassification and endorsement. In Proc. 19th European

Symp. on Programming (ESOP’10), March 2010.
[5] A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols: A case

study. In Proc. 10th European Symposium on Research in Computer Security (ESORICS), number 3679 in Lecture
Notes in Computer Science. Springer-Verlag, September 2005.

[6] M. Balliu and I. Mastroeni. A weakest precondition approach to active attacks analysis. In PLAS ’09: Proc. of the
ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security, pages 59–71. ACM, 2009.

[7] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies and modular static enforcement.
In Proc. IEEE Symp. on Security and Privacy, pages 339–353, May 2008.

[8] N. Broberg and D. Sands. Flow-sensitive semantics for dynamic information flow policies. In S. Chong and D. Nau-
mann, editors, ACM SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security (PLAS
2009), Dublin, June 15 2009. ACM.

[9] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applications via automatic
partitioning. In Proc. SOSP 2007, pages 31–44, October 2007.

[10] S. Chong and A. C. Myers. Decentralized robustness. In CSFW ’06: Proc. of the 19th IEEE workshop on Computer
Security Foundations, pages 242–256, Washington, DC, USA, 2006. IEEE Computer Society.

[11] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system. In Proc. IEEE Symp. on
Security and Privacy, pages 354–368, May 2008.

[12] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and event processes in the Asbestos operating system. In Proc. 20th ACM Symp. on Operating
System Principles (SOSP), October 2005.

[13] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security and Privacy,
pages 11–20, April 1982.

[14] M. D. McIlroy and J. A. Reeds. Multilevel security in the UNIX tradition. Software—Practice and Experience,
22(8):673–694, August 1992.

[15] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. ACM Symp. on Principles of Pro-
gramming Languages, pages 228–241, January 1999.

[16] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness. J. Com-
puter Security, 14(2):157–196, May 2006.

[17] A. C. Myers and B. Liskov. A decentralized model for information flow control. In Proc. 17th ACM Symp. on
Operating System Principles (SOSP), pages 129–142, Saint-Malo, France, 1997.

[18] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif 3.0: Java information flow. Software release,
http://www.cs.cornell.edu/jif, July 2006.

[19] K. O’Neill, M. Clarkson, and S. Chong. Information-flow security for interactive programs. In Proc. IEEE Computer
Security Foundations Workshop, pages 190–201, July 2006.

[20] P. Ørbæk and J. Palsberg. Trust in the λ-calculus. J. Functional Programming, 7(6):557–591, 1997.
[21] F. Pottier and S. Conchon. Information flow inference for free. In Proc. 5th ACM SIGPLAN International Conference

on Functional Programming (ICFP), pages 46–57, 2000.

ATTACKER CONTROL AND IMPACT FOR CONFIDENTIALITY AND INTEGRITY 31

[22] A. W. Roscoe. Csp and determinism in security modeling. In Proc. IEEE Symposium on Security and Privacy, 1995.
[23] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in Communica-

tions, 21(1):5–19, January 2003.
[24] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Computer Security, 2009.
[25] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. In Proc. 25th ACM

Symp. on Principles of Programming Languages (POPL), pages 355–364, San Diego, California, January 1998.
[26] D. Volpano and G. Smith. Probabilistic noninterference in a concurrent language. In Proc. IEEE Computer Security

Foundations Workshop, pages 34–43, June 1998.
[27] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. J. Computer Security, 4(3):167–

187, 1996.
[28] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. 14th IEEE Computer Security Foundations Work-

shop, pages 15–23, June 2001.
[29] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partitioning. ACM Transactions on Com-

puter Systems, 20(3):283–328, August 2002.
[30] N. Zeldovich, S. Boyd-Wickizer, and D. Mazières. Securing distributed systems with information flow control. In

Proc. 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 293–308, 2008.

Acknowledgments
The authors would like to thank the anonymous reviewers for comments on a draft of this paper. We
also thank Owen Arden, Stephen Chong, Michael Clarkson, Daniel Hedin, Andrei Sabelfeld, and
Danfeng Zhang for useful discussions.

This work was supported by a grant from the Office of Naval Research (ONR N000140910652)
and by two NSF grants (the TRUST center, 0424422; and 0964409). The U.S. Government is autho-
rized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsement, either expressed
or implied, of any of the funding agencies or of the U.S. Government.

	1. Introduction
	2. Semantics
	2.1. Attacker knowledge

	3. Attacks
	3.1. Examples of attacker influence
	3.2. Attacker control

	4. Robustness
	5. Endorsement
	6. Enforcement
	6.1. Soundness

	7. Checked endorsement
	7.1. Relation to direct endorsements

	8. Attacker impact
	9. Examples
	10. Related work
	11. Conclusion
	References
	Acknowledgments

